Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Mar;52(3):505-19.
doi: 10.1109/TBME.2004.843291.

A clinical water-coated antenna applicator for MR-controlled deep-body hyperthermia: a comparison of calculated and measured 3-D temperature data sets

Affiliations
Comparative Study

A clinical water-coated antenna applicator for MR-controlled deep-body hyperthermia: a comparison of calculated and measured 3-D temperature data sets

Jacek Nadobny et al. IEEE Trans Biomed Eng. 2005 Mar.

Abstract

A magnetic resonance (MR)-compatible three-dimensional (3-D) hyperthermia applicator was developed and evaluated in the magnetic resonance (MR) tomograph Siemens MAGNETOM Symphony 1.5 T. Radiating elements of this applicator are 12 so-called water coated antenna (WACOA) modules, which are designed as specially shaped and adjustable dipole structures in hermetically closed cassettes that are filled by deionized water. The WACOA modules are arranged in the applicator frame in two transversal antenna subarrays, six antennas per subarray. As a standard load for the applicator an inhomogeneous phantom was fabricated. Details of applicator's realization are presented and a 3-D comparison of calculated and measured temperature data sets is made. A fair agreement is achieved that demonstrates the numerically supported applicator's ability of phase-defined 3-D pattern steering. Further refinement of numerical models and measuring methods is necessary. The applicator's design and the E-field calculations were performed using the finite-difference time-domain (FDTD) method. The calculation and optimization of temperature patterns was obtained using the finite element method (FEM). For MR temperature measurements the proton resonance frequency (PRF) method was used.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms