Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Sep 30;5(3):e49.
doi: 10.1208/pt050349.

In vivo release kinetics of octreotide acetate from experimental polymeric microsphere formulations using oil/water and oil/oil processes

Affiliations
Comparative Study

In vivo release kinetics of octreotide acetate from experimental polymeric microsphere formulations using oil/water and oil/oil processes

Santos B Murty et al. AAPS PharmSciTech. .

Abstract

The purpose of the present study was to characterize the in vivo release kinetics of octreotide acetate from microsphere formulations designed to minimize peptide acylation and improve drug stability. Microspheres were prepared by a conventional oil/water (o/w) method or an experimental oil/oil (o/o) dispersion technique. The dosage forms were administered subcutaneously to a rat animal model, and serum samples were analyzed by radioimmunoassay over a 2-month period. An averaged kinetic profile from each treatment group, as a result, was treated with fractional differential equations. The results indicated that poly(l-lactide) microspheres prepared by the o/o dispersion technique provided lower area under the curve (AUC) values during the initial diffusion-controlled release phase, 7.79 ngxd/mL, versus 75.8 ngxd/mL for the o/w batch. During the subsequent erosion-controlled release phase, on the other hand, the o/o technique yielded higher AUC values, 123 ngxd/mL, versus 42.2 ngxd/mL for the o/w batch. The differences observed between the 2 techniques were attributed to the site of drug incorporation during the manufacturing process, given that microspheres contain both porous hydrophilic channels and dense hydrophobic matrix regions. An o/o dispersion technique was therefore expected to produce microspheres with lower incorporation in the aqueous channels, which are responsible for diffusion-mediated drug release.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Murty SB, Goodman J, Thanoo BC, DeLuca PP. Identification of chemically modified peptide from poly(D,L-lactide-co-glycolide) microspheres under in vitro release conditions. AAPS PharmSciTech. 2003;4:E50–E50. doi: 10.1208/pt040450. - DOI - PMC - PubMed
    1. De Weck AL. Immunological effects of aspirin anhydride, a contaminant of commercial acetylsalicylic acid preparations. Int Arch Allergy Appl Immunol. 1971;41:393–418. - PubMed
    1. Jeyanthi R, Thanoo BC, Mehta RC, DeLuca PP. Effect of solvent removal technique on the matrix characteristics of polylactide/glycolide microspheres for peptide delivery. J Control Release. 1996;38:235–244. doi: 10.1016/0168-3659(95)00125-5. - DOI
    1. Jeyanthi R, Mehta RC, Thanoo BC, DeLuca PP. Effect of processing parameters on the properties of peptide-containing PLGA microspheres. J Microencapsul. 1997;14:163–174. doi: 10.3109/02652049709015330. - DOI - PubMed
    1. Kostanski JW, Thanoo BC, DeLuca PP. Preparation, characterization, and in vitro evaluation of 1- and 4-month controlled release orntide PLA and PLGA microspheres. Pharm Dev Technol. 2000;5:585–596. doi: 10.1081/PDT-100102043. - DOI - PubMed

Publication types

LinkOut - more resources