Space in systems biology of signaling pathways--towards intracellular molecular crowding in silico
- PMID: 15763552
- DOI: 10.1016/j.febslet.2005.01.072
Space in systems biology of signaling pathways--towards intracellular molecular crowding in silico
Abstract
How cells utilize intracellular spatial features to optimize their signaling characteristics is still not clearly understood. The physical distance between the cell-surface receptor and the gene expression machinery, fast reactions, and slow protein diffusion coefficients are some of the properties that contribute to their intricacy. This article reviews computational frameworks that can help biologists to elucidate the implications of space in signaling pathways. We argue that intracellular macromolecular crowding is an important modeling issue, and describe how recent simulation methods can reproduce this phenomenon in either implicit, semi-explicit or fully explicit representation.
Similar articles
-
A model of TLR4 signaling and tolerance using a qualitative, particle-event-based method: introduction of spatially configured stochastic reaction chambers (SCSRC).Math Biosci. 2009 Jan;217(1):43-52. doi: 10.1016/j.mbs.2008.10.001. Epub 2008 Oct 11. Math Biosci. 2009. PMID: 18950646
-
Simulating complex intracellular processes using object-oriented computational modelling.Prog Biophys Mol Biol. 2004 Nov;86(3):379-406. doi: 10.1016/j.pbiomolbio.2003.11.001. Prog Biophys Mol Biol. 2004. PMID: 15302205 Review.
-
Automatic generation of cellular reaction networks with Moleculizer 1.0.Nat Biotechnol. 2005 Jan;23(1):131-6. doi: 10.1038/nbt1054. Nat Biotechnol. 2005. PMID: 15637632
-
Toward realistic modeling of dynamic processes in cell signaling: quantification of macromolecular crowding effects.J Chem Phys. 2007 Oct 21;127(15):155105. doi: 10.1063/1.2789434. J Chem Phys. 2007. PMID: 17949221
-
Stochastic approaches for modelling in vivo reactions.Comput Biol Chem. 2004 Jul;28(3):165-78. doi: 10.1016/j.compbiolchem.2004.05.001. Comput Biol Chem. 2004. PMID: 15261147 Review.
Cited by
-
Spatial simulations in systems biology: from molecules to cells.Int J Mol Sci. 2012;13(6):7798-7827. doi: 10.3390/ijms13067798. Epub 2012 Jun 21. Int J Mol Sci. 2012. PMID: 22837728 Free PMC article. Review.
-
A Computational Framework for Bioimaging Simulation.PLoS One. 2015 Jul 6;10(7):e0130089. doi: 10.1371/journal.pone.0130089. eCollection 2015. PLoS One. 2015. PMID: 26147508 Free PMC article.
-
Potential based, spatial simulation of dynamically nested particles.BMC Bioinformatics. 2019 Nov 27;20(1):607. doi: 10.1186/s12859-019-3092-y. BMC Bioinformatics. 2019. PMID: 31775608 Free PMC article.
-
MCell-R: A Particle-Resolution Network-Free Spatial Modeling Framework.Methods Mol Biol. 2019;1945:203-229. doi: 10.1007/978-1-4939-9102-0_9. Methods Mol Biol. 2019. PMID: 30945248 Free PMC article.
-
Biochemical simulations: stochastic, approximate stochastic and hybrid approaches.Brief Bioinform. 2009 Jan;10(1):53-64. doi: 10.1093/bib/bbn050. Epub 2009 Jan 16. Brief Bioinform. 2009. PMID: 19151097 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources