Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Mar 22;44(11):4416-25.
doi: 10.1021/bi0474362.

Ricin A-chain activity on stem-loop and unstructured DNA substrates

Affiliations

Ricin A-chain activity on stem-loop and unstructured DNA substrates

Tim K Amukele et al. Biochemistry. .

Abstract

Ricin toxin A-chain (RTA) depurinates a single adenylate on a GAGA stem-loop region of eukaryotic 28S RNA, making it a potent toxin. Steady state rate analysis is used to establish the kinetic parameters for depurination of short RNA, DNA, and RNA-DNA hybrids of GAGA linear segments and stem-loop regions as substrates for RTA. Both stem and tetraloop structures are essential for action on RNA. For DNA stem-loop substrates, stem stability plays a small role in enhancing catalytic turnover but can enhance binding by up to 3 orders of magnitude. DNA sequences of d[GAGA] without stem-loop structures are found to be slow substrates for RTA. In contrast, equivalent RNA sequences exhibit no activity with RTA. Introduction of a deoxyadenosine at the depurination site of short RNA oligonucleotides restores catalytic function. NMR analysis indicates that the short, nonsubstrate GAGA is converted to substrate in GdAGA by the presence of a more flexible ribosyl group at the deoxyadenosine site. Conversion between C2'-endo and C2'-exo conformations at the deoxyadenosine site moves the 3'- and 5'-phosphorus atoms by 1.1 A, and the former is proposed to place them in a catalytically favorable configuration. The ability to use short RNA-DNA hybrids as substrates for RTA permits exploration of related structures to function as substrates and inhibitors.

PubMed Disclaimer

Publication types

LinkOut - more resources