Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Apr 22;329(4):1275-81.
doi: 10.1016/j.bbrc.2005.02.103.

Eicosapentaenoic acid metabolism by cytochrome P450 enzymes of the CYP2C subfamily

Affiliations

Eicosapentaenoic acid metabolism by cytochrome P450 enzymes of the CYP2C subfamily

Eduardo Barbosa-Sicard et al. Biochem Biophys Res Commun. .

Abstract

CYP2C enzymes epoxidize arachidonic acid (AA) to metabolites involved in the regulation of vascular and renal function. We tested the hypothesis that eicosapentaenoic acid (EPA), a n-3 polyunsaturated fatty acid, may serve as an alternative substrate. Human CYP2C8 and CYP2C9, as well as rat CYP2C11 and CYP2C23, were co-expressed with NADPH-CYP reductase in a baculovirus/insect cell system. The recombinant enzymes showed high EPA and AA epoxygenase activities and the catalytic efficiencies were almost equal comparing the two substrates. The 17,18-double bond was the preferred site of EPA epoxidation by CYPs 2C8, 2C11, and 2C23. 17(R),18(S)-Epoxyeicosatetraenoic acid was produced with an optical purity of about 70% by CYPs 2C9, 2C11, and 2C23 whereas CYP2C8 showed the opposite enantioselectivity. These results demonstrate that EPA is an efficient substrate of CYP2C enzymes and suggest that n-3 PUFA-rich diets may shift the CYP2C-dependent generation of physiologically active eicosanoids from AA- to EPA-derived metabolites.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources