Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Apr;40(2):292-8.
doi: 10.1016/j.pep.2005.01.007.

A method for efficient production of recombinant thyroid hormone receptors reveals that receptor homodimer-DNA binding is enhanced by the coactivator TIF2

Affiliations

A method for efficient production of recombinant thyroid hormone receptors reveals that receptor homodimer-DNA binding is enhanced by the coactivator TIF2

Ericka M Diallo et al. Protein Expr Purif. 2005 Apr.

Abstract

Thyroid hormone receptors (TRs) are ligand-activated transcription factors that mediate the biological effects of thyroid hormone (T3) by binding to thyroid hormone response elements (TREs), typically located in the promoter regions of T3-responsive genes. It is generally held that T3-induced gene activation is mediated by retinoid X receptor (RXR)-TR heterodimers. Although TR homodimers can bind to some TREs, T3 destabilizes this interaction, calling into question the ability of TR to activate transcription in the absence of RXR. TR-DNA binding has been difficult to study in vitro because mammalian TRs are notoriously difficult to produce in Escherichia coli. We considered that this may be due to codon bias. Therefore, we produced TRbeta1 in E. coli Rosetta 2(DE3) which contains a plasmid that overexpresses the tRNAs corresponding to the seven rarest E. coli codons. This resulted in an improved yield of full-length TRbeta1, which we then used in electrophoretic mobility shift assays. We found the coactivator TIF2 greatly enhances binding of T3-occupied TRs to a subset of TREs, suggesting TRs may activate transcription from these TREs in an RXR-independent manner.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources