Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Apr;26(3):215-24.
doi: 10.1002/bem.20067.

Reevaluation and improved design of the TEM cell in vitro exposure unit for replication studies

Affiliations
Comparative Study

Reevaluation and improved design of the TEM cell in vitro exposure unit for replication studies

Neviana Nikoloski et al. Bioelectromagnetics. 2005 Apr.

Abstract

The transverse electromagnetic (TEM) cell system developed by Litovitz et al. and utilized by Penafiel et al. for the exposure of cells in T25 flasks at 835 MHz has been reevaluated for the purpose of replicating the studies published by Penafiel. The original setup has been reconstructed as closely as possible, with improvements enabling blinded exposures, forced cooling and better repeatable positioning of the flasks, as well as tight exposure and environmental parameter control. The signal unit can simulate the original signal but also enables various other exposure schemes. The setup has been evaluated for four T25 flasks filled with 5 and 10 ml of cell medium by experimental and numerical means. Comparing E field, SAR and temperature measurements resulted in good agreement: <0.4 dB (4.5%) for E field and 0.48 dB (10.5%) for SAR. The overall average SAR within the medium is 6.0 W/kg at 1 W input power with a standard deviation of less than 52%. The temperature increase was determined to be 0.13 degrees C/(W/kg). This can be reduced to 0.045 degrees C/(W/kg) by applying active air flow cooling. The comparison of SAR values from temperature measurements with the corresponding simulated values resulted in excellent agreement. These results do not correspond to the previous study reporting an average SAR within the medium of 2.5 W/kg at an input power of 0.96 W.

PubMed Disclaimer

MeSH terms

LinkOut - more resources