"Designer acids": combined acid catalysis for asymmetric synthesis
- PMID: 15770618
- DOI: 10.1002/anie.200460394
"Designer acids": combined acid catalysis for asymmetric synthesis
Abstract
Lewis and Brønsted acids can be utilized as more-effective tools for chemical reactions by sophisticated engineering ("designer acids"). The ultimate goal of such "designer acids" is to form a combination of acids with higher reactivity, selectivity, and versatility than the individual acid catalysts. One possible way to take advantage of such abilities may be to apply a "combined acids system" to the catalyst design. The concept of combined acids, which can be classified into Brønsted acid assisted Lewis acid (BLA), Lewis acid assisted Lewis acid (LLA), Lewis acid assisted Brønsted acid (LBA), and Brønsted acid assisted Brønsted acid (BBA), can be a particularly useful tool for the design of asymmetric catalysis, because combining such acids will bring out their inherent reactivity by associative interaction, and also provide more-organized structures that allow an effective asymmetric environment.
Similar articles
-
The crystallographic structure of a Lewis acid-assisted chiral Brønsted acid as an enantioselective protonation reagent for silyl enol ethers.J Am Chem Soc. 2003 Jan 8;125(1):24-5. doi: 10.1021/ja021000x. J Am Chem Soc. 2003. PMID: 12515493
-
Direct catalytic asymmetric addition of allyl cyanide to ketones via soft Lewis acid/hard Brønsted base/hard Lewis base catalysis.J Am Chem Soc. 2010 Apr 21;132(15):5522-31. doi: 10.1021/ja101687p. J Am Chem Soc. 2010. PMID: 20337453
-
Lewis base catalysis in organic synthesis.Angew Chem Int Ed Engl. 2008;47(9):1560-638. doi: 10.1002/anie.200604943. Angew Chem Int Ed Engl. 2008. PMID: 18236505
-
Solid-state nuclear magnetic resonance investigations of the nature, property, and activity of acid sites on solid catalysts.Solid State Nucl Magn Reson. 2011 May-Jun;39(3-4):116-41. doi: 10.1016/j.ssnmr.2011.03.007. Epub 2011 Apr 15. Solid State Nucl Magn Reson. 2011. PMID: 21592743 Review.
-
Asymmetric organocatalysis.Org Biomol Chem. 2005 Mar 7;3(5):719-24. doi: 10.1039/b415217b. Epub 2005 Feb 9. Org Biomol Chem. 2005. PMID: 15731852 Review.
Cited by
-
Synthesis of Pleuromutilin.J Am Chem Soc. 2022 Jun 15;144(23):10174-10179. doi: 10.1021/jacs.2c04708. Epub 2022 Jun 2. J Am Chem Soc. 2022. PMID: 35653288 Free PMC article.
-
Chemical Tagging of Bioactive Amides by Cooperative Catalysis: Applications in the Syntheses of Drug Conjugates.J Am Chem Soc. 2023 Jul 5;145(26):14233-14250. doi: 10.1021/jacs.3c00169. Epub 2023 Jun 21. J Am Chem Soc. 2023. PMID: 37341172 Free PMC article.
-
Acid-catalyzed, Three-component, Spontaneous Cascades of 1,3-Butadiynyl Propargylic Alcohols as a Route to Phthalan Derivatives.ACS Catal. 2025 Jul 18;15(14):12238-12246. doi: 10.1021/acscatal.5c03571. Epub 2025 Jul 6. ACS Catal. 2025. PMID: 40703645
-
Calix[4]pyrrolato gallate: square planar-coordinated gallium(iii) and its metal-ligand cooperative reactivity with CO2 and alcohols.Chem Sci. 2022 Sep 7;13(37):11215-11220. doi: 10.1039/d2sc03054c. eCollection 2022 Sep 28. Chem Sci. 2022. PMID: 36320463 Free PMC article.
-
Catalytic Asymmetric Hydroalkoxylation of C-C Multiple Bonds.Chem Rev. 2021 Dec 22;121(24):14649-14681. doi: 10.1021/acs.chemrev.1c00620. Epub 2021 Dec 3. Chem Rev. 2021. PMID: 34860509 Free PMC article. Review.
LinkOut - more resources
Full Text Sources
Other Literature Sources