Mesenchymal stem cells (MSC) as therapeutic cytoreagents for gene therapy
- PMID: 15771617
- PMCID: PMC11159137
- DOI: 10.1111/j.1349-7006.2005.00032.x
Mesenchymal stem cells (MSC) as therapeutic cytoreagents for gene therapy
Abstract
We developed human mesenchymal stem cell (MSC) lines that could differentiate into various tissue cells including bone, neural cells, bone marrow (BM) stromal cells supporting the growth of hematopoietic stem cell (HSC), and so-called 'tumor stromal cells' mixing with tumor cells. We investigated the applicability of MSC as therapeutic cell transplanting reagents (cytoreagents). Telomerized human BM derived stromal cells exhibited a prolonged lifespan and supported the growth of hematopoietic clonogenic cells. The gene transfer of Indian hedgehog (Ihh) remarkably enhanced the HSC expansion supported by the human BM stromal cells. Gene-modified MSC are useful as therapeutic tools for brain tissue damage (e.g. brain infarction) and malignant brain neoplasms. MSC transplantation protected the brain tissue from acute ischemic damage in the midcerebral artery occlusion (MCAO) animal model. Brain-derived neurotrophic factor (BDNF)-gene transduction further enhanced the protective efficacy against the ischemic damage. MSC possessed excellent migratory ability and exerted inhibitory effects on the proliferation of glioma cells. Gene-modification of MSC with therapeutic cytokines clearly augmented the antitumor effect and prolonged the survival of tumor-bearing animals. Gene therapy employing MSC as a tissue-protecting and targeting cytoreagent would be a promising approach.
Figures
References
-
- Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143–147. - PubMed
-
- Kobune M, Kawano Y, Ito Y, Chiba H, Nakamura K, Tsuda H, Sasaki K, Dehari H, Uchida H, Honmou O, Takahashi S, Bizen A, Takimoto R, Matsunaga T, Kato J, Kato K, Houkin K, Niitsu Y, Hamada H. Telomerized human multipotent mesenchymal cells can differentiate into hematopoietic and cobblestone area‐supporting cells. Exp Hematol 2003; 31: 715–22. - PubMed
-
- Tsuda H, Wada T, Ito Y, Uchida H, Dehari H, Nakamura K, Sasaki K, Kobune M, Yamashita T, Hamada H. Efficient BMP2 gene transfer and bone formation of mesenchymal stem cells by a fiber‐mutant adenoviral vector. Mol Ther 2003; 7: 354–65. - PubMed
-
- Kawano Y, Kobune M, Yamaguchi M, Nakamura K, Ito Y, Sasaki K, Takahashi S, Nakamura T, Chiba H, Sato T, Matsunaga T, Azuma H, Ikebuchi K, Ikeda H, Kato J, Niitsu Y, Hamada H. Ex vivo expansion of human umbilical cord hematopoietic progenitor cells using a coculture system with human telomerase catalytic subunit (hTERT)‐transfected human stromal cells. Blood 2003; 101: 532–40. - PubMed
-
- Kobune M, Ito Y, Kawano Y, Sasaki K, Uchida H, Nakamura K, Dehari H, Chiba H, Takimoto R, Matsunaga T, Terui T, Kato J, Niitsu Y, Hamada H. Indian hedgehog gene transfer augments hematopoietic support of human stromal cells including NOD/SCID–beta−2m‐/‐ repopulating cells. Blood 2004; 102: 1002–9. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
