Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 May 20;280(20):19829-35.
doi: 10.1074/jbc.M414060200. Epub 2005 Mar 16.

Ubiquitin binding site of the ubiquitin E2 variant (UEV) protein Mms2 is required for DNA damage tolerance in the yeast RAD6 pathway

Affiliations
Free article

Ubiquitin binding site of the ubiquitin E2 variant (UEV) protein Mms2 is required for DNA damage tolerance in the yeast RAD6 pathway

Colleen Tsui et al. J Biol Chem. .
Free article

Abstract

Different ubiquitin modifications to proliferating cell nuclear antigen (PCNA) signal distinct modes of lesion bypass in the RAD6 pathway of DNA damage tolerance. The modification of PCNA with monoubiquitin signals an error-prone bypass, whereas the extension of this modification into a Lys-63-linked polyubiquitin chain promotes error-free bypass. Chain formation is catalyzed by the Mms2/Ubc13 conjugating enzyme variant/conjugating enzyme (UEV.E2) complex together with the Rad5 ubiquitin ligase. In vitro studies of this UEV.E2 complex have identified a ubiquitin binding site that is mainly localized on Mms2. However, the role of this site in DNA damage tolerance and the molecular features of the ubiquitin/Mms2 interaction are poorly understood. Here we identify two molecular determinants, the side chains of Mms2-Ile-57 and ubiquitin-Ile-44, that are required for chain assembly in vitro and error-free lesion bypass in vivo. Mutating either of these side chains to alanine elicits a severe 10-20-fold inhibition of chain synthesis that is caused by compromised binding of the acceptor ubiquitin to Mms2. These results suggest that the ubiquitin binding site of Mms2 is necessary for error-free lesion bypass in the RAD6 pathway and provide new insights into ubiquitin recognition by UEV proteins.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources