Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Apr;6(2):303-12.
doi: 10.1093/biostatistics/kxi011.

A marginal model approach for analysis of multi-reader multi-test receiver operating characteristic (ROC) data

Affiliations
Comparative Study

A marginal model approach for analysis of multi-reader multi-test receiver operating characteristic (ROC) data

Xiao Song et al. Biostatistics. 2005 Apr.

Abstract

The receiver operating characteristic curve is a popular tool to characterize the capabilities of diagnostic tests with continuous or ordinal responses. One common design for assessing the accuracy of diagnostic tests involves multiple readers and multiple tests, in which all readers read all test results from the same patients. This design is most commonly used in a radiology setting, where the results of diagnostic tests depend on a radiologist's subjective interpretation. The most widely used approach for analyzing data from such a study is the Dorfman-Berbaum-Metz (DBM) method (Dorfman et al., 1992) which utilizes a standard analysis of variance (ANOVA) model for the jackknife pseudovalues of the area under the ROC curves (AUCs). Although the DBM method has performed well in published simulation studies, there is no clear theoretical basis for this approach. In this paper, focusing on continuous outcomes, we investigate its theoretical basis. Our result indicates that the DBM method does not satisfy the regular assumptions for standard ANOVA models, and thus might lead to erroneous inference. We then propose a marginal model approach based on the AUCs which can adjust for covariates as well. Consistent and asymptotically normal estimators are derived for regression coefficients. We compare our approach with the DBM method via simulation and by an application to data from a breast cancer study. The simulation results show that both our method and the DBM method perform well when the accuracy of tests under the study is the same and that our method outperforms the DBM method for inference on individual AUCs when the accuracy of tests is not the same. The marginal model approach can be easily extended to ordinal outcomes.

PubMed Disclaimer

Publication types

LinkOut - more resources