Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Feb 1;70(1):79-84.
doi: 10.1016/0378-1097(92)90566-7.

Replacement of the essential penicillin-binding protein 5 by high-molecular mass PBPs may explain vancomycin-beta-lactam synergy in low-level vancomycin-resistant Enterococcus faecium D366

Affiliations

Replacement of the essential penicillin-binding protein 5 by high-molecular mass PBPs may explain vancomycin-beta-lactam synergy in low-level vancomycin-resistant Enterococcus faecium D366

S al-Obeid et al. FEMS Microbiol Lett. .

Abstract

The mechanism of synergy between vancomycin and penicillin, as well as other beta-lactam antibiotics, was examined in a penicillin-resistant E. faecium (D366) expressing an inducible low-level resistance to vancomycin. It was demonstrated that penicillin per se was not able to reduce the inducible expression of the 39.5-kDa protein (VANB) or the carboxypeptidase activity which are involved in the mechanism of vancomycin resistance of this strain. Assays of competition between 3H-benzylpenicillin and diverse beta-lactam antibiotics suggested as the most likely explanation of the synergy that, once vancomycin resistance has been induced, the high-molecular mass penicillin-binding proteins (PBPs), and possibly PBP1 in particular, which have a high affinity for beta-lactam antibiotics, take over the role of the low-affinity PBP5 which is, in the non-induced strain, responsible for beta-lactam resistance.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources