Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 May;206(1):52-61.
doi: 10.1002/path.1753.

Computer-based detection of neonatal changes to branching morphogenesis reveals different mechanisms of and predicts prostate enlargement in mice haplo-insufficient for bone morphogenetic protein 4

Affiliations

Computer-based detection of neonatal changes to branching morphogenesis reveals different mechanisms of and predicts prostate enlargement in mice haplo-insufficient for bone morphogenetic protein 4

Ghanim Almahbobi et al. J Pathol. 2005 May.

Abstract

Early changes to branching morphogenesis of the prostate are believed to lead to enlargement of the gland in adult life. However, it has not been possible to demonstrate directly that alterations to branching during the developmental period have a permanent effect on adult prostate size. In order to examine branching morphogenesis in a quantitative manner in neonatal mice, a combination of imaging and computational technology was used to detect and quantify branching using bone morphogenetic protein 4 haplo-insufficient mice that develop enlarged prostate glands in adulthood. Accurate estimates were made of six parameters of branching, including prostate ductal length and volume and number of main ducts, branches, branch points, and tips. The results show that the prostate is significantly larger on day 3, well before the emergence of the phenotype in older animals. The ventral prostate is enlarged because the number of main epithelial ducts is increased; enlargement of the anterior prostate in mutant animals occurs because there are more branches. These lobe-specific mechanisms underlying prostate enlargement indicate the complex nature of gland pathology in mice, rather than a simple increase in weight or volume. This method provides a powerful means to investigate the aetiology of prostate disease in animal models prior to emergence of a phenotype in later life.

PubMed Disclaimer

Publication types

MeSH terms

Substances