Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Mar 17:4:17.
doi: 10.1186/1475-925X-4-17.

Mechanical properties of femoral trabecular bone in dogs

Affiliations

Mechanical properties of femoral trabecular bone in dogs

Thomas Pressel et al. Biomed Eng Online. .

Abstract

Background: Studying mechanical properties of canine trabecular bone is important for a better understanding of fracture mechanics or bone disorders and is also needed for numerical simulation of canine femora. No detailed data about elastic moduli and degrees of anisotropy of canine femoral trabecular bone has been published so far, hence the purpose of this study was to measure the elastic modulus of trabecular bone in canine femoral heads by ultrasound testing and to assess whether assuming isotropy of the cancellous bone in femoral heads in dogs is a valid simplification.

Methods: From 8 euthanized dogs, both femora were obtained and cubic specimens were cut from the centre of the femoral head which were oriented along the main pressure and tension trajectories. The specimens were tested using a 100 MHz ultrasound transducer in all three orthogonal directions. The directional elastic moduli of trabecular bone tissue and degrees of anisotropy were calculated.

Results: The elastic modulus along principal bone trajectories was found to be 11.2 GPa +/- 0.4, 10.5 +/- 2.1 GPa and 10.5 +/- 1.8 GPa, respectively. The mean density of the specimens was 1.40 +/- 0.09 g/cm3. The degrees of anisotropy revealed a significant inverse relationship with specimen densities. No significant differences were found between the elastic moduli in x, y and z directions, suggesting an effective isotropy of trabecular bone tissue in canine femoral heads.

Discussion: This study presents detailed data about elastic moduli of trabecular bone tissue obtained from canine femoral heads. Limitations of the study are the relatively small number of animals investigated and the measurement of whole specimen densities instead of trabecular bone densities which might lead to an underestimation of Young's moduli. Publications on elastic moduli of trabecular bone tissue present results that are similar to our data.

Conclusion: This study provides data about directional elastic moduli and degrees of anisotropy of canine femoral head trabecular bone and might be useful for biomechanical modeling of proximal canine femora.

PubMed Disclaimer

Figures

Figure 2
Figure 2
Schematic representation of femoral head and neck. The main tensile and compressive trajectories and the orientation of the cubic specimen and coordinate system are shown.
Figure 1
Figure 1
Cubic specimen cut from one canine femoral head.
Figure 3
Figure 3
Degrees of anisotropy in dependence of specimen density. Correlation coefficients are listed in the symbol legend.

Similar articles

Cited by

References

    1. Ciarelli TE, Fyhrie DP, Schaffler MB, Goldstein SA. Variations in three-dimensional cancellous bone architecture of the proximal femur in female hip fractures and in controls. J Bone Miner Res. 2000;15:32–40. - PubMed
    1. Kaneko TS, Bell JS, Pejcic MR, Tehranzadeh J, Keyak JH. Mechanical properties, density and quantitative CT scan data of trabecular bone with and without metastases. J Biomech. 2004;37:523–530. doi: 10.1016/j.jbiomech.2003.08.010. - DOI - PubMed
    1. Majumdar S, Kothari M, Augat P, Newitt DC, Link TM, Lin JC, Lang T, Lu Y, Genant HK. High-resolution magnetic resonance imaging: three-dimensional trabecular bone architecture and biomechanical properties. Bone. 1998;22:445–454. doi: 10.1016/S8756-3282(98)00030-1. - DOI - PubMed
    1. Ulrich D, Hildebrand T, Van RB, Muller R, Ruegsegger P. The quality of trabecular bone evaluated with micro-computed tomography, FEA and mechanical testing. Stud Health Technol Inform. 1997;40:97–112. - PubMed
    1. Cody DD, Gross GJ, Hou FJ, Spencer HJ, Goldstein SA, Fyhrie DP. Femoral strength is better predicted by finite element models than QCT and DXA. J Biomech. 1999;32:1013–1020. doi: 10.1016/S0021-9290(99)00099-8. - DOI - PubMed

Publication types