Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Jun;37(6):1145-50.
doi: 10.1016/j.biocel.2004.10.004.

Astrocytes: regulation of brain homeostasis via apolipoprotein E

Affiliations
Review

Astrocytes: regulation of brain homeostasis via apolipoprotein E

Jillian R Gee et al. Int J Biochem Cell Biol. 2005 Jun.

Abstract

Astrocytes are derived from the ventricular and subventricular zones of the neural plate, though there is controversy over their derivation from astrocyte-specific precursor cells or radial glia intermediates. Astrocytes are the most abundant cell type in the brain and contribute to brain homeostasis in several ways, including buffering of extracellular K+, regulating neurotransmitter release, forming the blood-brain barrier (BBB), releasing growth factors, and regulating the brain immune response. In addition, astrocytes have been shown to release apolipoprotein E (ApoE), which has been shown to regulate neurotransmission, growth factor release, and immune responses. Due to the diverse functions of astrocytes, they may play a role in a variety of diseases such as hepatic encephalopathy, multiple sclerosis, epilepsy, and age-related diseases including Alzheimer's disease and Parkinson's disease. This review highlights many of the diverse roles played by astrocytes in regulating brain homeostasis and discusses their potential role in a variety of disorders.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources