Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Apr 1;174(7):4333-44.
doi: 10.4049/jimmunol.174.7.4333.

HIV-1 transactivator of transcription protein induces mitochondrial hyperpolarization and synaptic stress leading to apoptosis

Affiliations

HIV-1 transactivator of transcription protein induces mitochondrial hyperpolarization and synaptic stress leading to apoptosis

Seth W Perry et al. J Immunol. .

Abstract

Despite the efficacy of highly active antiretroviral therapy in reducing viral burden, neurologic disease associated with HIV-1 infection of the CNS has not decreased in prevalence. HIV-1 does not induce disease by direct infection of neurons, although extensive data suggest that intra-CNS viral burden correlates with both the severity of virally induced neurologic disease, and with the generation of neurotoxic metabolites. Many of these molecules are capable of inducing neuronal apoptosis in vitro, but neuronal apoptosis in vivo does not correlate with CNS dysfunction, thus prompting us to investigate cellular and synaptic events occurring before cell death that may contribute to HIV-1-associated neurologic disease. We now report that the HIV-1 regulatory protein transactivator of transcription protein (Tat) increased oxidative stress, ATP levels, and mitochondrial membrane potential in primary rodent cortical neurons. Additionally, a proinflammatory cellular metabolite up-regulated by Tat, platelet-activating factor, also induced oxidative stress and mitochondrial hyperpolarization in neurons, suggesting that this type of metabolic dysfunction may occur on a chronic basis during HIV-1 infection of the CNS. Tat-induced mitochondrial hyperpolarization could be blocked with a low dose of the protonophore FCCP, or the mitochondrial KATP channel antagonist, tolbutamide. Importantly, blocking the mitochondrial hyperpolarization attenuated Tat-induced neuronal apoptosis, suggesting that increased mitochondrial membrane potential may be a causal event in precipitating neuronal apoptosis in cell culture. Finally, Tat and platelet-activating factor also increased neuronal vesicular release, which may be related to increased mitochondrial bioenergetics and serve as a biomarker for early damage to neurons.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources