Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jun 15;171(12):1408-13.
doi: 10.1164/rccm.200503-409OC. Epub 2005 Mar 18.

Fluctuations in end-expiratory lung volume during Cheyne-Stokes respiration

Affiliations

Fluctuations in end-expiratory lung volume during Cheyne-Stokes respiration

Thomas Brack et al. Am J Respir Crit Care Med. .

Abstract

We hypothesized that patients with Cheyne-Stokes respiration exhibit periodic increases in end-expiratory lung volume, mediated by changes in breath components, postinspiratory inspiratory muscle activity, or both. Calibrated inductive plethysmography revealed that 12 of 12 patients with Cheyne-Stokes respiration experienced increases in end-expiratory volume during hyperpnea: maximum 412 +/- 112 (SE) ml (range 75-1,543 ml). Compared with quiet breathing, the breath with largest increase in end-expiratory volume had larger tidal volume (867 +/- 107 vs. 567 +/- 38 ml, p < 0.01) and shorter expiratory time (1.25 +/- 0.11 vs. 1.66 +/- 0.15 seconds, p < 0.05). During decrescendo, the breath with largest decrease in end-expiratory volume had smaller tidal volume (p < 0.01) and longer expiratory time (p < 0.01). Cross-correlation of time series revealed that end-expiratory volume was related to both breath components (p < 0.0001). Bipolar needle electrodes revealed that scalene muscle activity at end-expiration was 50.7 +/- 14.0% higher at highest increase in lung volume than during preceding apnea (p < 0.05). Time series for scalene activity and end-expiratory volume were cross-correlated (p < 0.008). Increase in tonic scalene activity at end-expiration, however, was equivalent during crescendo and decrescendo phases: 50.6 +/- 22.1 versus 42.0 +/- 12.9% (p = 0.48). In conclusion, patients with Cheyne-Stokes respiration exhibit fluctuations in end-expiratory lung volume, primarily because of alterations in tidal volume and expiratory time rather than postinspiratory inspiratory muscle activity.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources