Lattice defects in microtubules: protofilament numbers vary within individual microtubules
- PMID: 1577866
- PMCID: PMC2289483
- DOI: 10.1083/jcb.117.5.1031
Lattice defects in microtubules: protofilament numbers vary within individual microtubules
Abstract
We have used cryo-electron microscopy of vitrified specimens to study microtubules assembled both from three cycle purified tubulin (3x-tubulin) and in cell free extracts of Xenopus eggs. In vitro assembled 3x-tubulin samples have a majority of microtubules with 14 protofilaments whereas in cell extracts most microtubules have 13 protofilaments. Microtubule polymorphism was observed in both cases. The number of protofilaments can change abruptly along individual microtubules usually by single increments but double increments also occur. For 3x-tubulin, increasing the magnesium concentration decreases the proportion of 14 protofilament microtubules and decreases the average separation between transitions in these microtubules. Protofilament discontinuities may correspond to dislocation-like defects in the microtubule surface lattice.
Similar articles
-
Characterization of microtubule protofilament numbers. How does the surface lattice accommodate?J Mol Biol. 1990 Apr 20;212(4):775-86. doi: 10.1016/0022-2836(90)90236-F. J Mol Biol. 1990. PMID: 2329582
-
Straight GDP-tubulin protofilaments form in the presence of taxol.Curr Biol. 2007 Oct 23;17(20):1765-70. doi: 10.1016/j.cub.2007.08.063. Epub 2007 Oct 4. Curr Biol. 2007. PMID: 17919908
-
Low resolution structure of microtubules in solution. Synchrotron X-ray scattering and electron microscopy of taxol-induced microtubules assembled from purified tubulin in comparison with glycerol and MAP-induced microtubules.J Mol Biol. 1992 Jul 5;226(1):169-84. doi: 10.1016/0022-2836(92)90132-4. J Mol Biol. 1992. PMID: 1352357
-
New data on the microtubule surface lattice.Biol Cell. 1991;71(1-2):161-74. doi: 10.1016/0248-4900(91)90062-r. Biol Cell. 1991. PMID: 1912942 Review.
-
A microtubule bestiary: structural diversity in tubulin polymers.Mol Biol Cell. 2017 Nov 1;28(22):2924-2931. doi: 10.1091/mbc.E16-05-0271. Mol Biol Cell. 2017. PMID: 29084910 Free PMC article. Review.
Cited by
-
Concentration dependence of variability in growth rates of microtubules.Biophys J. 2002 Oct;83(4):1809-19. doi: 10.1016/S0006-3495(02)73946-5. Biophys J. 2002. PMID: 12324403 Free PMC article.
-
Microtubule instability driven by longitudinal and lateral strain propagation.PLoS Comput Biol. 2020 Sep 2;16(9):e1008132. doi: 10.1371/journal.pcbi.1008132. eCollection 2020 Sep. PLoS Comput Biol. 2020. PMID: 32877399 Free PMC article.
-
A bending mode analysis for growing microtubules: evidence for a velocity-dependent rigidity.Biophys J. 2004 Oct;87(4):2723-36. doi: 10.1529/biophysj.103.038877. Biophys J. 2004. PMID: 15454464 Free PMC article.
-
Causes, costs and consequences of kinesin motors communicating through the microtubule lattice.J Cell Sci. 2023 Mar 1;136(5):jcs260735. doi: 10.1242/jcs.260735. Epub 2023 Mar 3. J Cell Sci. 2023. PMID: 36866642 Free PMC article.
-
Dynamic microtubules slow down during their shrinkage phase.Biophys J. 2023 Feb 21;122(4):616-623. doi: 10.1016/j.bpj.2023.01.020. Epub 2023 Jan 19. Biophys J. 2023. PMID: 36659852 Free PMC article.