Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Apr;5(6-7):579-93.
doi: 10.1016/j.femsyr.2004.09.009.

Physiological and genome-wide transcriptional responses of Saccharomyces cerevisiae to high carbon dioxide concentrations

Affiliations

Physiological and genome-wide transcriptional responses of Saccharomyces cerevisiae to high carbon dioxide concentrations

Jaime Aguilera et al. FEMS Yeast Res. 2005 Apr.

Abstract

Physiological effects of carbon dioxide and impact on genome-wide transcript profiles were analysed in chemostat cultures of Saccharomyces cerevisiae. In anaerobic, glucose-limited chemostat cultures grown at atmospheric pressure, cultivation under CO(2)-saturated conditions had only a marginal (<10%) impact on the biomass yield. Conversely, a 25% decrease of the biomass yield was found in aerobic, glucose-limited chemostat cultures aerated with a mixture of 79% CO(2) and 21% O(2). This observation indicated that respiratory metabolism is more sensitive to CO(2) than fermentative metabolism. Consistent with the more pronounced physiological effects of CO(2) in respiratory cultures, the number of CO(2)-responsive transcripts was higher in aerobic cultures than in anaerobic cultures. Many genes involved in mitochondrial functions showed a transcriptional response to elevated CO(2) concentrations. This is consistent with an uncoupling effect of CO(2) and/or intracellular bicarbonate on the mitochondrial inner membrane. Other transcripts that showed a significant transcriptional response to elevated CO(2) included NCE103 (probably encoding carbonic anhydrase), PCK1 (encoding PEP carboxykinase) and members of the IMD gene family (encoding isozymes of inosine monophosphate dehydrogenase).

PubMed Disclaimer

Publication types

MeSH terms