Elephants and human color-blind deuteranopes have identical sets of visual pigments
- PMID: 15781694
- PMCID: PMC1449733
- DOI: 10.1534/genetics.104.039511
Elephants and human color-blind deuteranopes have identical sets of visual pigments
Abstract
Being the largest land mammals, elephants have very few natural enemies and are active during both day and night. Compared with those of diurnal and nocturnal animals, the eyes of elephants and other arrhythmic species, such as many ungulates and large carnivores, must function in both the bright light of day and dim light of night. Despite their fundamental importance, the roles of photosensitive molecules, visual pigments, in arrhythmic vision are not well understood. Here we report that elephants (Loxodonta africana and Elephas maximus) use RH1, SWS1, and LWS pigments, which are maximally sensitive to 496, 419, and 552 nm, respectively. These light sensitivities are virtually identical to those of certain "color-blind" people who lack MWS pigments, which are maximally sensitive to 530 nm. During the day, therefore, elephants seem to have the dichromatic color vision of deuteranopes. During the night, however, they are likely to use RH1 and SWS1 pigments and detect light at 420-490 nm.
Figures



Similar articles
-
The cone visual pigments of an Australian marsupial, the tammar wallaby (Macropus eugenii): sequence, spectral tuning, and evolution.Mol Biol Evol. 2003 Oct;20(10):1642-9. doi: 10.1093/molbev/msg181. Epub 2003 Jul 28. Mol Biol Evol. 2003. PMID: 12885969
-
The visual pigments of the West Indian manatee (Trichechus manatus).Vision Res. 2006 Oct;46(20):3326-30. doi: 10.1016/j.visres.2006.03.010. Epub 2006 May 2. Vision Res. 2006. PMID: 16650454
-
The molecular basis of dichromatic color vision in males with multiple red and green visual pigment genes.Hum Mol Genet. 2002 Jan 1;11(1):23-32. doi: 10.1093/hmg/11.1.23. Hum Mol Genet. 2002. PMID: 11772996
-
[Current views on vision of mammals].Zh Obshch Biol. 2012 Nov-Dec;73(6):418-34. Zh Obshch Biol. 2012. PMID: 23330397 Review. Russian.
-
Evolution of dim-light and color vision pigments.Annu Rev Genomics Hum Genet. 2008;9:259-82. doi: 10.1146/annurev.genom.9.081307.164228. Annu Rev Genomics Hum Genet. 2008. PMID: 18544031 Review.
Cited by
-
Functional characterization of spectral tuning mechanisms in the great bowerbird short-wavelength sensitive visual pigment (SWS1), and the origins of UV/violet vision in passerines and parrots.BMC Evol Biol. 2013 Nov 13;13:250. doi: 10.1186/1471-2148-13-250. BMC Evol Biol. 2013. PMID: 24499383 Free PMC article.
-
Adaptive evolutionary paths from UV reception to sensing violet light by epistatic interactions.Sci Adv. 2015 Sep 18;1(8):e1500162. doi: 10.1126/sciadv.1500162. eCollection 2015 Sep. Sci Adv. 2015. PMID: 26601250 Free PMC article.
-
Eye features and retinal photoreceptors of the nocturnal aardvark (Orycteropus afer, Tubulidentata).PLoS One. 2025 Mar 24;20(3):e0314252. doi: 10.1371/journal.pone.0314252. eCollection 2025. PLoS One. 2025. PMID: 40127097 Free PMC article.
-
Spectral tuning and evolution of primate short-wavelength-sensitive visual pigments.Proc Biol Sci. 2012 Jan 22;279(1727):387-93. doi: 10.1098/rspb.2011.0782. Epub 2011 Jun 22. Proc Biol Sci. 2012. PMID: 21697177 Free PMC article.
-
Mechanisms of spectral tuning in the RH2 pigments of Tokay gecko and American chameleon.Gene. 2007 Sep 1;399(1):26-32. doi: 10.1016/j.gene.2007.04.036. Epub 2007 May 10. Gene. 2007. PMID: 17590287 Free PMC article.
References
-
- Ali, M. A., and M. A. Klyne, 1985 Vision in Vertebrates. Plenum Press, New York.
-
- Archer, S. N., A. J. Hope and J. C. Partridge, 1996. The molecular basis for the blue-green sensitivity in the rod visual pigments of the European eel. Proc. R. Soc. Lond. Ser. B 262: 289–295. - PubMed
-
- Asenjo, A. B., J. Rim and D. D. Oprian, 1994. Molecular determinants of human red/green color discrimination. Neuron 12: 1131–1138. - PubMed
-
- Calderone, J. B., B. E. Reese and G. H. Jacobs, 2003. Topography of photoreceptors and retinal ganglion cells in the spotted hyena (Crocuta crocuta). Brain Behav. Evol. 62: 182–192. - PubMed
-
- Carleton, K. L., and T. D. Kocher, 2001. Cone opsin genes of African cichlid fishes: tuning spectral sensitivity by differential gene expression. Mol. Biol. Evol. 18: 1540–1550. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
- Actions
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous