Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Mar 29;111(12):1510-6.
doi: 10.1161/01.CIR.0000159339.00703.22. Epub 2005 Mar 21.

Adenovirus-mediated overexpression of diacylglycerol kinase-zeta inhibits endothelin-1-induced cardiomyocyte hypertrophy

Affiliations

Adenovirus-mediated overexpression of diacylglycerol kinase-zeta inhibits endothelin-1-induced cardiomyocyte hypertrophy

Hiroki Takahashi et al. Circulation. .

Abstract

Background: Diacylglycerol (DAG) is a lipid second messenger that transiently accumulates in cells stimulated by endothelin-1 (ET-1) and other Galphaq protein-coupled receptor agonists. Diacylglycerol kinase (DGK) is thought to be an enzyme that controls the cellular levels of DAG by converting it to phosphatidic acid; however, the functional role of DGK has not been examined in cardiomyocytes. Because DGK inactivates DAG, a strong activator of protein kinase C (PKC), we hypothesized that DGK inhibited ET-1-induced activation of a DAG-PKC signaling cascade and subsequent cardiomyocyte hypertrophy.

Methods and results: Real-time reverse transcription-polymerase chain reaction demonstrated a significant increase of DGK-zeta mRNA by ET-1 in cardiomyocytes. To determine the functional role of DGK-zeta, we overexpressed DGK-zeta in cardiomyocytes using a recombinant adenovirus encoding rat DGK-zeta (Ad-DGKzeta). ET-1-induced translocation of PKC-epsilon was blocked by Ad-DGKzeta (P<0.01). Ad-DGKzeta also inhibited ET-1-induced activation of extracellular signal-regulated kinase (P<0.01). Luciferase reporter assay revealed that ET-1-mediated increase of activator protein-1 (AP1) DNA-binding activity was significantly inhibited by DGK-zeta (P<0.01). In cardiomyocytes transfected with DGK-zeta, ET-1 failed to cause gene induction of atrial natriuretic factor, increases in [3H]-leucine uptake, and increases in cardiomyocyte surface area.

Conclusions: We demonstrated for the first time that DGK-zeta blocked ET-1-induced activation of the PKC-epsilon-ERK-AP1 signaling pathway, atrial natriuretic factor gene induction, and resultant cardiomyocyte hypertrophy. DGK-zeta might act as a negative regulator of hypertrophic program in response to ET-1, possibly by controlling cellular DAG levels.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources