Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Apr;208(Pt 7):1297-308.
doi: 10.1242/jeb.01525.

Oxygen and water flux across eggshells of Manduca sexta

Affiliations
Comparative Study

Oxygen and water flux across eggshells of Manduca sexta

H Arthur Woods et al. J Exp Biol. 2005 Apr.

Erratum in

  • J Exp Biol. 2005 Sep;208(Pt 7):3622

Abstract

Insect eggs must obtain oxygen across the eggshell to support embryonic development. Because eggs are small, obtaining enough oxygen would seem trivial. Recent work, however, has shown that eggs of a moth, Manduca sexta, are oxygen limited at high but realistic temperatures (32-37 degrees C) and that P(O2) drops steeply across the eggshell. Here we use theoretical and experimental approaches to partition the total resistance to oxygen flux among several steps in the oxygen cascade from environment to embryo. Standard mass-transfer analysis suggests that boundary layers of air around eggs, and around substrates to which they are attached, offer negligible resistance. Likewise, a mathematical model, parameterized using published and newly obtained morphological data, predicts that air-filled parts of the chorion also do not resist oxygen flux. This prediction was confirmed by experiments that measured rates of carbon dioxide emission from batches of eggs subjected simultaneously to hypoxia and inert gas substitution: depression of metabolic rate by hypoxia was not rescued when the diffusion coefficient of oxygen in air was doubled by substituting helium for nitrogen. The model did predict, however, that a set of subchoral layers (a crystalline chorionic layer, a wax layer and the vitelline membrane) could account for most or all of the total resistance to oxygen flux. Support for this prediction was obtained from two sequential experiments. First, eggs extracted with chloroform:methanol had highly elevated rates of water loss, suggesting that indeed eggs of M. sexta are waterproofed by wax. Second, rates of water loss and carbon dioxide emission from batches of eggs, measured from laying to hatching, changed in parallel over development. These data suggest that a single layer, likely a wax layer or a combination of wax and other subchoral layers, provides the main resistance to water efflux and oxygen influx.

PubMed Disclaimer

Publication types

LinkOut - more resources