Neural activity in dorsolateral pontine nucleus of alert monkey during ocular following responses
- PMID: 1578251
- DOI: 10.1152/jn.1992.67.3.680
Neural activity in dorsolateral pontine nucleus of alert monkey during ocular following responses
Abstract
1. Movements of the visual scene evoke short-latency ocular following responses. To study the neural mediation of the ocular following responses, we investigated neurons in the dorsolateral pontine nucleus (DLPN) of behaving monkeys. The neurons discharged during brief, sudden movements of a large-field visual stimulus, eliciting ocular following. Most of them (100/112) responded to movements of a large-field visual stimulus with directional selectivity. 2. Response amplitude was measured in two components of the neural response: an initial transient component and a late sustained component. Most direction-selective DLPN neurons showed their strongest responses at high stimulus speeds (80-160 degrees/s), whether their response components were initial (63/87, 72%) or sustained (63/87, 72%). The average firing rates of 87 DLPN neurons increased as a linear function of the logarithm of stimulus speed up to 40 degrees/s for both initial and sustained responses. 3. Not only the magnitude but also the latency of the neural and ocular responses were dependent on stimulus speed. The latencies of both neural and ocular responses were inversely related to the stimulus speed. As a result, the time difference between the response latencies for neural and ocular responses did not vary much with changes of stimulus speed. 4. Response latency was measured when a large-field random dot pattern was moved in the preferred direction and at the preferred speed of each neuron. Seventy-three percent (56/77) of the neurons were activated less than 50 ms after the onset of the stimulus motion. In most cases (67/77, 87%), their increase of firing rate started before the eye movements, and 34% of them (26/77) started greater than 10 ms before the eye movements. 5. Blurring of the random dot pattern by interposing a sheet of ground glass increased the latency of both neural responses and eye movements. On the other hand, the blurred images did not change the timing of the effect of blanking the visual scene on the responses of the neurons or eye movements. 6. When a check pattern was used instead of random dots, both neural and ocular responses began to decrease rapidly when the temporal frequency of the visual stimulus exceeded 20 Hz. When the temporal frequency of the visual stimulus approached 40 Hz, the neurons showed a distinctive burst-and-pause firing pattern. The eye movements recorded at the same time showed signs of oscillation, and their temporal patterns were closely correlated to those of the firing rate.(ABSTRACT TRUNCATED AT 400 WORDS)
Similar articles
-
Neural activity in cortical area MST of alert monkey during ocular following responses.J Neurophysiol. 1994 Jun;71(6):2305-24. doi: 10.1152/jn.1994.71.6.2305. J Neurophysiol. 1994. PMID: 7931519
-
Visual motion response properties of neurons in dorsolateral pontine nucleus of alert monkey.J Neurophysiol. 1990 Jan;63(1):37-59. doi: 10.1152/jn.1990.63.1.37. J Neurophysiol. 1990. PMID: 2299385
-
Response properties of dorsolateral pontine units during smooth pursuit in the rhesus macaque.J Neurophysiol. 1988 Aug;60(2):664-86. doi: 10.1152/jn.1988.60.2.664. J Neurophysiol. 1988. PMID: 3171646
-
Control of the optokinetic reflex by the nucleus of the optic tract in primates.Prog Brain Res. 1989;80:173-82; discussion 171-2. doi: 10.1016/s0079-6123(08)62211-6. Prog Brain Res. 1989. PMID: 2517458 Review.
-
Sensory-to-motor processing of the ocular-following response.Neurosci Res. 2002 Jul;43(3):201-6. doi: 10.1016/s0168-0102(02)00044-5. Neurosci Res. 2002. PMID: 12103438 Review.
Cited by
-
Purkinje cell responses during visually and vestibularly driven smooth eye movements in mice.Brain Behav. 2015 Mar;5(3):e00310. doi: 10.1002/brb3.310. Epub 2015 Jan 21. Brain Behav. 2015. PMID: 25642393 Free PMC article.
-
Early behavior of optokinetic responses elicited by transparent motion stimuli during depth-based attention.Exp Brain Res. 2003 Aug;151(3):411-9. doi: 10.1007/s00221-003-1497-2. Epub 2003 Jun 13. Exp Brain Res. 2003. PMID: 12811443
-
Predictive smooth pursuit of complex two-dimensional trajectories in monkey: component interactions.Exp Brain Res. 1996 Mar;108(2):221-35. doi: 10.1007/BF00228096. Exp Brain Res. 1996. PMID: 8815031
-
The effects of prolonged viewing of motion on short-latency ocular following responses.Exp Brain Res. 2009 May;195(2):195-205. doi: 10.1007/s00221-009-1768-7. Epub 2009 Mar 24. Exp Brain Res. 2009. PMID: 19308363
-
Neural activity in the dorsal medial superior temporal area of monkeys represents retinal error during adaptive motor learning.Sci Rep. 2017 Jan 19;7:40939. doi: 10.1038/srep40939. Sci Rep. 2017. PMID: 28102342 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Research Materials