Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Apr;85(2):757-810.
doi: 10.1152/physrev.00057.2003.

Store-operated calcium channels

Affiliations
Free article
Review

Store-operated calcium channels

Anant B Parekh et al. Physiol Rev. 2005 Apr.
Free article

Abstract

In electrically nonexcitable cells, Ca(2+) influx is essential for regulating a host of kinetically distinct processes involving exocytosis, enzyme control, gene regulation, cell growth and proliferation, and apoptosis. The major Ca(2+) entry pathway in these cells is the store-operated one, in which the emptying of intracellular Ca(2+) stores activates Ca(2+) influx (store-operated Ca(2+) entry, or capacitative Ca(2+) entry). Several biophysically distinct store-operated currents have been reported, but the best characterized is the Ca(2+) release-activated Ca(2+) current, I(CRAC). Although it was initially considered to function only in nonexcitable cells, growing evidence now points towards a central role for I(CRAC)-like currents in excitable cells too. In spite of intense research, the signal that relays the store Ca(2+) content to CRAC channels in the plasma membrane, as well as the molecular identity of the Ca(2+) sensor within the stores, remains elusive. Resolution of these issues would be greatly helped by the identification of the CRAC channel gene. In some systems, evidence suggests that store-operated channels might be related to TRP homologs, although no consensus has yet been reached. Better understood are mechanisms that inactivate store-operated entry and hence control the overall duration of Ca(2+) entry. Recent work has revealed a central role for mitochondria in the regulation of I(CRAC), and this is particularly prominent under physiological conditions. I(CRAC) therefore represents a dynamic interplay between endoplasmic reticulum, mitochondria, and plasma membrane. In this review, we describe the key electrophysiological features of I(CRAC) and other store-operated Ca(2+) currents and how they are regulated, and we consider recent advances that have shed insight into the molecular mechanisms involved in this ubiquitous and vital Ca(2+) entry pathway.

PubMed Disclaimer

Publication types

LinkOut - more resources