Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 May 1;80(3):424-33.
doi: 10.1002/jnr.20437.

Activation of gamma-aminobutyric acid GAT-1 transporters on glutamatergic terminals of mouse spinal cord mediates glutamate release through anion channels and by transporter reversal

Affiliations

Activation of gamma-aminobutyric acid GAT-1 transporters on glutamatergic terminals of mouse spinal cord mediates glutamate release through anion channels and by transporter reversal

Luca Raiteri et al. J Neurosci Res. .

Abstract

The effects of gamma-aminobutyric acid (GABA) on the release of glutamate from mouse spinal cord nerve endings have been studied using superfused synaptosomes. GABA elicited a concentration-dependent release of [3H]D-aspartate ([3H]D-ASP; EC50= 3.76 microM). Neither muscimol nor (-)baclofen mimicked GABA, excluding receptor involvement. The GABA-evoked release was strictly Na+ dependent and was prevented by the GABA transporter inhibitor SKF89976A, suggesting involvement of GAT-1 transporters located on glutamatergic nerve terminals. GABA also potentiated the spontaneous release of endogenous glutamate; an effect sensitive to SKF89976A and low-Na+-containing medium. Confocal microscopy shows that the GABA transporter GAT-1 is coexpressed with the vesicular glutamate transporter vGLUT-1 and with the plasma membrane glutamate transporter EAAT2 in a substantial portion of synaptosomal particles. The GABA effect was external Ca2+ independent and was not decreased when cytosolic Ca2+ ions were chelated by BAPTA. The glutamate transporter blocker DL-TBOA or dihydrokainate inhibited in part (approximately 35%) the GABA (10 microM)-evoked [3H]D-ASP release; this release was strongly reduced by the anion channel blockers niflumic acid and NPPB. GABA, up to 30 microM, was unable to augment significantly the basal release of [3H]glycine from spinal cord synaptosomes, indicating selectivity for glutamatergic transmission. It is concluded that GABA GAT-1 transporters and glutamate transporters coexist on the same spinal cord glutamatergic terminals. Activation of these GABA transporters elicits release of glutamate partially by reversal of glutamate transporters present on glutamatergic terminals and largely through anion channels.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources