Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jul;99(1):189-96.
doi: 10.1152/japplphysiol.00070.2005. Epub 2005 Mar 24.

Neonatal maternal separation enhances phrenic responses to hypoxia and carotid sinus nerve stimulation in the adult anesthetized rat

Affiliations
Free article

Neonatal maternal separation enhances phrenic responses to hypoxia and carotid sinus nerve stimulation in the adult anesthetized rat

Richard Kinkead et al. J Appl Physiol (1985). 2005 Jul.
Free article

Abstract

In awake animals, our laboratory recently showed that the hypoxic ventilatory response of adult male (but not female) rats previously subjected to neonatal maternal separation (NMS) is 25% greater than controls (Genest SE, Gulemetova R, Laforest S, Drolet G, and Kinkead R. J Physiol 554: 543-557, 2004). To begin mechanistic investigations of the effects of this neonatal stress on respiratory control development, we tested the hypothesis that, in male rats, NMS enhances central integration of carotid body chemoafferent signals. Experiments were performed on two groups of adult male rats. Pups subjected to NMS were placed in a temperature-controlled incubator 3 h/day from postnatal day 3 to postnatal day 12. Control pups were undisturbed. At adulthood (8-10 wk), rats were anesthetized (urethane; 1.6 g/kg), paralyzed, and ventilated with a hyperoxic gas mixture [inspired O2 fraction (Fi(O2)) = 0.5], and phrenic nerve activity was recorded. The first series of experiments aimed to demonstrate that NMS-related enhancement of the inspiratory motor output (phrenic) response to hypoxia occurs in anesthetized animals also. In this series, rats were exposed to moderate, followed by severe, isocapnic hypoxia (Fi(O2) = 0.12 and 0.08, respectively, 5 min each). NMS enhanced both the frequency and amplitude components of the phrenic response to hypoxia relative to controls, thereby validating the use of this approach. In a second series of experiments, NMS increased the amplitude (but not the frequency) response to unilateral carotid sinus nerve stimulation (stimulation frequency range: 0.5-33 Hz). We conclude that enhancement of central integration of carotid body afferent signal contributes to the larger hypoxic ventilatory response observed in NMS rats.

PubMed Disclaimer

Publication types

LinkOut - more resources