Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Mar;21(3):207-13.
doi: 10.1089/aid.2005.21.207.

SPL7013 gel as a topical microbicide for prevention of vaginal transmission of SHIV89.6P in macaques

Affiliations

SPL7013 gel as a topical microbicide for prevention of vaginal transmission of SHIV89.6P in macaques

Yong-Hou Jiang et al. AIDS Res Hum Retroviruses. 2005 Mar.

Abstract

SPL7013 is a dendrimer with a polyanionic outer surface that allows multiple interactions with target sites. It potently binds and blocks HIV-1 and chimeric simian/HIV-1 viruses (SHIVs) replication in vitro. Gels containing different concentrations of SPL7013 were used as topical microbicides in female pigtailed macaques (Macaca nemestrina) to study their ability to prevent vaginal transmission of SHIV(89,6P). On virus challenge, all untreated macaques (8/8) and seven of eight macaques treated with placebo gel were infected within 2 weeks postinfection (PI) and showed high plasma viremia and dramatic CD4(+) cell decline within 4 weeks PI. In contrast, 6/6 macaques, 5/6 macaques, and 2/6 macaques treated with 5% w/w (50 mg/ml), 3% w/w (30 mg/ml), and 1% w/w (10 mg/ml) SPL7013 gels, respectively, resisted viral challenge. The results showed that animals treated with SPL7013 showed a dose-dependent resistance to virus challenge. Neither SPL7013 nor placebo gels produced any adverse effects following the single application in the study. These results showed that 3-5% w/w SPL7013 gels were effective in blocking vaginal transmission of SHIV in macaques after single gel application followed by single virus challenge. These results suggest that SPL7013 gel may be a promising anti-HIV microbicide formulation for further evaluation.

PubMed Disclaimer

Publication types

MeSH terms