Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Mar;130(Pt 3):249-59.
doi: 10.1017/s003118200400664x.

Malarial (Plasmodium falciparum) dihydrofolate reductase-thymidylate synthase: structural basis for antifolate resistance and development of effective inhibitors

Affiliations
Review

Malarial (Plasmodium falciparum) dihydrofolate reductase-thymidylate synthase: structural basis for antifolate resistance and development of effective inhibitors

Y Yuthavong et al. Parasitology. 2005 Mar.

Abstract

Dihydrofolate reductase-thymidylate synthase (DHFR-TS) from Plasmodium falciparum, a validated target for antifolate antimalarials, is a dimeric enzyme with interdomain interactions significantly mediated by the junction region as well as the Plasmodium-specific additional sequences (inserts) in the DHFR domain. The X-ray structures of both the wild-type and mutant enzymes associated with drug resistance, in complex with either a drug which lost, or which still retains, effectiveness for the mutants, reveal features which explain the basis of drug resistance resulting from mutations around the active site. Binding of rigid inhibitors like pyrimethamine and cycloguanil to the enzyme active site is affected by steric conflict with the side-chains of mutated residues 108 and 16, as well as by changes in the main chain configuration. The role of important residues on binding of inhibitors and substrates was further elucidated by site-directed and random mutagenesis studies. Guided by the active site structure and modes of inhibitor binding, new inhibitors with high affinity against both wild-type and mutant enzymes have been designed and synthesized, some of which have very potent anti-malarial activities against drug-resistant P. falciparum bearing the mutant enzymes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources