Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Apr 1;245(1):33-8.
doi: 10.1016/j.femsle.2005.02.016.

Role of superoxide in the germination of Bacillus anthracis endospores

Affiliations

Role of superoxide in the germination of Bacillus anthracis endospores

Les Baillie et al. FEMS Microbiol Lett. .

Abstract

The spore forming Gram-positive bacterium Bacillus anthracis, the causative agent of anthrax, has achieved notoriety due to its use as a bioterror agent. In the environment, B. anthracis exists as a dormant endospore. Germination of endospores during their internalization within the myeloid phagocyte, and the ability of those endospores to survive exposure to antibacterial killing mechanisms such as superoxide (O(2)*-, is a key initial event in the infective process. We report herein that endospores exposed to fluxes of O(2)*- typically found in stimulated phagocytes had no effect on viability. Further endospores of the Sterne strain of B. anthracis were found to scavenge O(2)*-, which may enhance the ability of the bacterium to survive within the hostile environment of the phagolysosome. Most intriguing was the observation that endospore germination was stimulated by a flux of O(2)*- as low as 1 microM/min. Data presented herein suggest that B. anthracis may co-opt O(2)*- which is produced by stimulated myeloid phagocytes and is an essential element of host immunity, as a necessary step in productive infection of the host.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources