Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Mar;12(3):267-77.
doi: 10.1016/j.chembiol.2004.11.020.

Structural insights into biological roles of protein-glycosaminoglycan interactions

Affiliations
Review

Structural insights into biological roles of protein-glycosaminoglycan interactions

Rahul Raman et al. Chem Biol. 2005 Mar.

Abstract

The extracellular environment is largely comprised of complex polysaccharides, which were historically considered inert materials that hydrated the cells and contributed to the structural scaffolds. Recent advances in development of sophisticated analytical techniques have brought about a dramatic transformation in understanding the numerous biological roles of these complex polysaccharides. Glycosaminoglycans (GAGs) are a class of these polysaccharides, which bind to a wide variety of proteins and signaling molecules in the cellular environment and modulate their activity, thus impinging on fundamental biological processes. Despite the importance of GAGs modulating biological functions, there are relatively few examples that demonstrate specificity of GAG-protein interactions, which in turn define the structure-function relationships of these polysaccharides. Focusing on heparin/heparan (HSGAGs) and chondroitin/dermatan sulfate (CSGAGs), this review provides structural insights into the oligosaccharide-protein interactions and discusses some key and challenging aspects of understanding GAG structure-function relationships.

PubMed Disclaimer

Publication types

LinkOut - more resources