Ischemic proximal tubular injury primes mice to endotoxin-induced TNF-alpha generation and systemic release
- PMID: 15798091
- DOI: 10.1152/ajprenal.00023.2005
Ischemic proximal tubular injury primes mice to endotoxin-induced TNF-alpha generation and systemic release
Abstract
Endotoxemia (LPS) can exacerbate ischemic tubular injury and acute renal failure (ARF). The present study tested the following hypothesis: that acute ischemic damage sensitizes the kidney to LPS-mediated TNF-alpha generation, a process that can worsen inflammation and cytotoxicity. CD-1 mice underwent 15 min of unilateral renal ischemia. LPS (10 mg/kg iv), or its vehicle, was injected either 45 min before, or 18 h after, the ischemic event. TNF-alpha responses were gauged 2 h post-LPS injection by measuring plasma/renal cortical TNF-alpha and renal cortical TNF-alpha mRNA. Values were contrasted to those obtained in sham-operated mice or in contralateral, nonischemic kidneys. TNF-alpha generation by isolated mouse proximal tubules (PTs), and by cultured proximal tubule (HK-2) cells, in response to hypoxia-reoxygenation (H/R), oxidant stress, antimycin A (AA), or LPS was also assessed. Ischemia-reperfusion (I/R), by itself, did not raise plasma or renal cortical TNF-alpha or its mRNA. However, this same ischemic insult dramatically sensitized mice to LPS-mediated TNF-alpha increases in both plasma and kidney (approximately 2-fold). During late reperfusion, increased TNF-alpha mRNA levels also resulted. PTs generated TNF-alpha in response to injury. Neither AA nor LPS alone induced an HK-2 cell TNF-alpha response. However, when present together, AA+LPS induced approximately two- to fivefold increases in TNF-alpha/TNF-alpha mRNA. We conclude that modest I/R injury, and in vitro HK-2 cell mitochondrial inhibition (AA), can dramatically sensitize the kidney/PTs to LPS-mediated TNF-alpha generation and increases in TNF-alpha mRNA. That ischemia can "prime" tubules to LPS response(s) could have potentially important implications for sepsis syndrome, concomitant renal ischemia, and for the induction of ARF.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
