Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Apr;54(4):522-8.
doi: 10.1016/j.metabol.2004.11.006.

Age and muscle-type modulated role of intramyocellular lipids in the progression of insulin resistance in nondiabetic Zucker rats

Affiliations
Comparative Study

Age and muscle-type modulated role of intramyocellular lipids in the progression of insulin resistance in nondiabetic Zucker rats

Marion Korach-André et al. Metabolism. 2005 Apr.

Abstract

The effect of muscle fiber type and maturation on intramyocellular lipid (IMCL) content and its relationship to insulin resistance was investigated. Intramyocellular lipid content in slow-twitch (soleus) and fast-twitch (tibialis anterior, TA) muscles of fa/fa (Zucker fatty rat, ZFR) and age-matched lean (Zucker lean rat, ZLR) Zucker rats were repeatedly measured over 3 months. Intramyocellular lipid levels in both the soleus and the TA were significantly higher in the ZFR relative to the ZLR. For the ZFR, IMCL TA increased by approximately 2-fold from 5.3 to 8.4 weeks of age. No subsequent accumulation of IMCL TA occurred in ZFR from 8.4 up to 13.1 weeks of age. For ZLR, IMCL TA contents steadily decreased from 6.6 to 13.1 weeks of age (-77%, P<.05). In contrast, IMCL levels in the soleus were not significantly altered in either rat strain over the course of the study. Maximum impairment in whole-body insulin sensitivity in ZFR was observed at 9-weeks of age, concomitant with peak IMCL TA accumulation. Insulin-stimulated 2-deoxy-D-glucose (2DG) transport in the TA muscle of 10.2- and 14.1-week-old ZFR was significantly impaired relative to age-matched ZLR. Insulin-stimulated glucose uptake in the soleus of ZFR and ZLR decreased (P<.05) as the animals matured (ZFR, -49%; ZLR, -69%). Overall, these results support the hypothesis that fast-twitch glycolytic muscles play a major role during the onset of insulin resistance. In addition, proper timing may govern the success of a pharmacological studies aimed at measuring the impact of insulin-sensitizing drugs on IMCL.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources