Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Apr;53(4):750-9.
doi: 10.1002/mrm.20407.

Multi-slice echo-planar spectroscopic MR imaging provides both global and local metabolite measures in multiple sclerosis

Affiliations
Free article

Multi-slice echo-planar spectroscopic MR imaging provides both global and local metabolite measures in multiple sclerosis

Henrik Kahr Mathiesen et al. Magn Reson Med. 2005 Apr.
Free article

Abstract

MR spectroscopy (MRS) provides information about neuronal loss or dysfunction by measuring decreases in N-acetyl aspartate (NAA), a metabolite widely believed to be a marker of neuronal viability. In multiple sclerosis (MS), whole-brain NAA (WBNAA) has been suggested as a marker of disease progression and treatment efficacy in treatment trials, and the ability to measure NAA loss in specific brain regions early in the evolution of this disease may have prognostic value. Most spectroscopic studies to date have been limited to single voxels or nonlocalized measurements of WBNAA only, and longitudinal studies have often been hampered by standardization and reproducibility problems. Multi-slice echo-planar spectroscopic imaging (EPSI) is presented as a promising alternative to single-voxel or nonlocalized spectroscopy for obtaining global metabolite estimates in MS. In the same session, measurements of metabolites in specific brain areas chosen after image acquisition (e.g., normal-appearing white matter (NAWM), gray matter (GM), and lesions) can be obtained. The identification and exclusion of regions that are inadequate for spectroscopic evaluation in global assessments can significantly improve quality and reproducibility, as demonstrated by a low within-subject variance in healthy controls. The reproducibility of the technique makes it a promising tool for future longitudinal spectroscopic studies of MS.

PubMed Disclaimer

Publication types

LinkOut - more resources