Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jul;146(7):3141-9.
doi: 10.1210/en.2004-0869. Epub 2005 Mar 31.

Protein breakdown in muscle from burned rats is blocked by insulin-like growth factor i and glycogen synthase kinase-3beta inhibitors

Affiliations

Protein breakdown in muscle from burned rats is blocked by insulin-like growth factor i and glycogen synthase kinase-3beta inhibitors

Cheng-Hui Fang et al. Endocrinology. 2005 Jul.

Abstract

We reported previously that IGF-I inhibits burn-induced muscle proteolysis. Recent studies suggest that activation of the phosphotidylinositol 3-kinase (PI3K)/Akt signaling pathway with downstream phosphorylation of Forkhead box O transcription factors is an important mechanism of IGF-I-induced anabolic effects in skeletal muscle. The potential roles of other mechanisms in the anabolic effects of IGF-I are less well understood. In this study we tested the roles of mammalian target of rapamycin and glycogen synthase kinase-3beta (GSK-3beta) phosphorylation as well as MAPK- and calcineurin-dependent signaling pathways in the anticatabolic effects of IGF-I by incubating extensor digitorum longus muscles from burned rats in the presence of IGF-I and specific signaling pathway inhibitors. Surprisingly, the PI3K inhibitors LY294002 and wortmannin reduced basal protein breakdown. No additional inhibition by IGF-I was noticed in the presence of LY294002 or wortmannin. Inhibition of proteolysis by IGF-I was associated with phosphorylation (inactivation) of GSK-3beta. In addition, the GSK-3beta inhibitors, lithium chloride and thiadiazolidinone-8, reduced protein breakdown in a similar fashion as IGF-I. Lithium chloride, but not thiadiazolidinone-8, increased the levels of phosphorylated Foxo 1 in incubated muscles from burned rats. Inhibitors of mammalian target of rapamycin, MAPK, and calcineurin did not prevent the IGF-I-induced inhibition of muscle proteolysis. Our results suggest that IGF-I inhibits protein breakdown at least in part through a PI3K/Akt/GSK3beta-dependent mechanism. Additional experiments showed that similar mechanisms were responsible for the effect of IGF-I in muscle from nonburned rats. Taken together with recent reports in the literature, the present results suggest that IGF-I inhibits protein breakdown in skeletal muscle by multiple mechanisms, including PI3K/Akt-mediated inactivation of GSK-3beta and Foxo transcription factors.

PubMed Disclaimer

Publication types

MeSH terms

Substances