Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Jan-Feb;2(1):29-36.
doi: 10.1021/mp049901v.

Superior cell delivery features of poly(ethylene glycol) incorporated alginate, chitosan, and poly-L-lysine microcapsules

Affiliations
Comparative Study

Superior cell delivery features of poly(ethylene glycol) incorporated alginate, chitosan, and poly-L-lysine microcapsules

Tasima Haque et al. Mol Pharm. 2005 Jan-Feb.

Abstract

Microencapsulation is an emerging technology in the development of bioartificial organs for drug, protein, and delivery systems. One of the advancements in establishing an appropriate membrane material for live cell and tissue encapsulation is the incorporation of poly(ethylene glycol) (PEG) to the widely studied alginate microcapsules. The current study investigates the properties of integrating PEG to microcapsules coated with poly-L-lysine (PLL) and chitosan as well as a novel microcapsule membrane which combines both PLL and chitosan. Results show that microcapsules containing PEG can support cell viability and protein secretion. The addition of PEG to PLL and chitosan-coated microcapsules improves the stability of microcapsules when exposed to a hypotonic solution. We also compared the novel microcapsule with two other previously used microcapsules including alginate-chitosan-PEG and alginate-PLL-PEG-alginate. Results show that all three membranes are capable of providing immunoprotection to the cells and have the potential for long-term storage at -80 degrees C. The novel membrane containing PEG, chitosan, and PLL, however, revealed the highest cell viability and mechanical strength when exposed to external rotational force, but it was unable to sustain osmotic pressure. The study revealed the potential of using PEG-incorporated alginate, chitosan, and PLL microcapsules for encapsulating live cells producing proteins and hormones for therapy.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources