Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005;33(1):181-4.
doi: 10.1080/01926230590522095.

Molecular mechanisms of hepatocarcinogenesis in transgenic mouse models of liver cancer

Affiliations
Review

Molecular mechanisms of hepatocarcinogenesis in transgenic mouse models of liver cancer

Diego F Calvisi et al. Toxicol Pathol. 2005.

Abstract

Overexpression of c-myc and transforming growth factor-alpha (TGF-alpha) has been frequently observed in human hepatocellular carcinoma (HCC),suggesting a pivotal role played by these protooncogenes in liver oncogenesis. In order to investigate the molecular events underlying human hepatic malignant transformation, we have generated c-myc and c-myc/ TGF-alpha transgenic mice that are prone to liver cancer. These transgenic mice develop HCCs with different incidence, kinetics and histopathological features. Indeed, co-expression of c-myc and TGF-alpha transgenes results in a dramatic synergistic effect on liver tumor development when compared with respective single transgenic lines, including a shorter latency period and a more aggressive phenotype. The more malignant histopathological features characteristic of c-myc/ TGF-alpha HCCs are the result of the increased proliferation and reduced apoptosis in this model of liver cancer when compared with single parental lines. Accordingly, c-myc and c-myc/l TGF-alpha transgenic mice display a different molecular pathogenesis of HCC. Importantly, the genetic and molecular mechanisms that are involved in c-myc and c-myc/ TGF-alpha liver cancer development are major oncogenic events in human hepatocarcinogenesis, indicating that these mouse models represent a useful tool to dissect and elucidate the molecular basis of human HCC.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources