Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Apr 1;18(1):61-9.
doi: 10.1016/j.molcel.2005.02.033.

Cyclic ADP-ribose and hydrogen peroxide synergize with ADP-ribose in the activation of TRPM2 channels

Affiliations
Free article

Cyclic ADP-ribose and hydrogen peroxide synergize with ADP-ribose in the activation of TRPM2 channels

Martin Kolisek et al. Mol Cell. .
Free article

Abstract

The melastatin-related transient receptor potential channel TRPM2 is a plasma membrane Ca2+-permeable cation channel that is activated by intracellular adenosine diphosphoribose (ADPR) binding to the channel's enzymatic Nudix domain. Channel activity is also seen with nicotinamide dinucleotide (NAD+) and hydrogen peroxide (H2O2), but their mechanisms of action remain unknown. Here, we identify cyclic adenosine diphosphoribose (cADPR) as an agonist of TRPM2 with dual activity: at concentrations above 100 microM, cADPR can gate the channel by itself, whereas lower concentrations of 10 microM have a potentiating effect that enables ADPR to gate the channel at nanomolar concentrations. ADPR's breakdown product adenosine monophosphate (AMP) specifically inhibits ADPR, but not cADPR-mediated gating of TRPM2, whereas the cADPR antagonist 8-Br-cADPR exhibits the reverse block specificity. Our results establish TRPM2 as a coincidence detector for ADPR and cADPR signaling and provide a functional context for cADPR as a second messenger for Ca2+ influx.

PubMed Disclaimer

Publication types

MeSH terms