Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Apr;29(2):361-75.
doi: 10.1016/j.femsre.2004.12.007.

How radiation kills cells: survival of Deinococcus radiodurans and Shewanella oneidensis under oxidative stress

Affiliations
Free article
Review

How radiation kills cells: survival of Deinococcus radiodurans and Shewanella oneidensis under oxidative stress

Debabrota Ghosal et al. FEMS Microbiol Rev. 2005 Apr.
Free article

Abstract

We have recently shown that Deinococcus radiodurans and other radiation resistant bacteria accumulate exceptionally high intracellular manganese and low iron levels. In comparison, the dissimilatory metal-reducing bacterium Shewanella oneidensis accumulates Fe but not Mn and is extremely sensitive to radiation. We have proposed that for Fe-rich, Mn-poor cells killed at radiation doses which cause very little DNA damage, cell death might be induced by the release of Fe(II) from proteins during irradiation, leading to additional cellular damage by Fe(II)-dependent oxidative stress. In contrast, Mn(II) ions concentrated in D. radiodurans might serve as antioxidants that reinforce enzymic systems which defend against oxidative stress during recovery. We extend our hypothesis here to include consideration of respiration, tricarboxylic acid cycle activity, peptide transport and metal reduction, which together with Mn(II) transport represent potential new targets to control recovery from radiation injury.

PubMed Disclaimer

Publication types

LinkOut - more resources