On the origin of genomic adaptation at high temperature for prokaryotic organisms
- PMID: 15809043
- DOI: 10.1016/j.bbrc.2005.02.134
On the origin of genomic adaptation at high temperature for prokaryotic organisms
Abstract
For a long time, the central issue of evolutionary genomics was to find out the adaptive strategy of nucleic acid molecules of various microorganisms having different optimal growth temperatures (Topt). Long-standing controversies exist regarding the correlations between genomic G+C content and Topt, and this debate has not been yet settled. We address this problem by considering the fact that adaptation to growth at high temperature requires a coordinated set of evolutionary changes affecting: (i) nucleic acid thermostability and (ii) stability of codon-anticodon interactions. In the present study, we analyzed 16 prokaryotic genomes having intermediate G+C content and widely varying optimal growth temperatures. Results show that elevated growth temperature imposes selective constraints not only on nucleic acid level but also affects the stability of codon-anticodon interaction. We observed a decrease in the frequency of SSC and SSG codons with the increase in Topt to avoid the formation of side-by-side GC base pairs in the codon-anticodon interaction, thereby making it impossible for a genome to increase GC composition uniformly through the whole coding sequence. Thus, we suggest that any attempt to obtain a generalized relation between genomic GC composition and optimal growth temperature would hardly evolve any satisfactory result.
Similar articles
-
On the correlation between genomic G+C content and optimal growth temperature in prokaryotes: data quality and confounding factors.Biochem Biophys Res Commun. 2006 Apr 14;342(3):681-4. doi: 10.1016/j.bbrc.2006.02.037. Epub 2006 Feb 20. Biochem Biophys Res Commun. 2006. PMID: 16499870 Review.
-
Correlations between genomic GC levels and optimal growth temperatures in prokaryotes.FEBS Lett. 2004 Aug 27;573(1-3):73-7. doi: 10.1016/j.febslet.2004.07.056. FEBS Lett. 2004. PMID: 15327978
-
Correlations between genomic GC levels and optimal growth temperatures are not 'robust'.Biochem Biophys Res Commun. 2004 Dec 10;325(2):381-3. doi: 10.1016/j.bbrc.2004.10.051. Biochem Biophys Res Commun. 2004. PMID: 15530402
-
Genomic GC level, optimal growth temperature, and genome size in prokaryotes.Biochem Biophys Res Commun. 2006 Aug 18;347(1):1-3. doi: 10.1016/j.bbrc.2006.06.054. Epub 2006 Jun 19. Biochem Biophys Res Commun. 2006. PMID: 16815305
-
tRNA's wobble decoding of the genome: 40 years of modification.J Mol Biol. 2007 Feb 9;366(1):1-13. doi: 10.1016/j.jmb.2006.11.046. Epub 2006 Nov 15. J Mol Biol. 2007. PMID: 17187822 Review.
Cited by
-
Phylogenomic analysis of the emergence of GC-rich transcription elements.Proc Natl Acad Sci U S A. 2007 Oct 16;104(42):16528-33. doi: 10.1073/pnas.0707203104. Epub 2007 Oct 9. Proc Natl Acad Sci U S A. 2007. PMID: 17925442 Free PMC article.
-
Prokaryotes that grow optimally in acid have purine-poor codons in long open reading frames.Extremophiles. 2007 Jan;11(1):9-18. doi: 10.1007/s00792-006-0005-6. Epub 2006 Sep 7. Extremophiles. 2007. PMID: 16957882
-
'Hot' macromolecular crystals.Cryst Growth Des. 2009 Dec 18;10(2):580. doi: 10.1021/cg900971h. Cryst Growth Des. 2009. PMID: 20161694 Free PMC article.
-
Genomic adaptation of prokaryotic organisms at high temperature.Bioinformation. 2010 Feb 28;4(8):352-6. doi: 10.6026/97320630004352. Bioinformation. 2010. PMID: 20975899 Free PMC article.
-
Genome size and GC content evolution of Festuca: ancestral expansion and subsequent reduction.Ann Bot. 2008 Feb;101(3):421-33. doi: 10.1093/aob/mcm307. Epub 2007 Dec 24. Ann Bot. 2008. PMID: 18158307 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Miscellaneous