Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Apr 15:14 Spec No 1:R59-64.
doi: 10.1093/hmg/ddi117.

Imprinted X inactivation and reprogramming in the preimplantation mouse embryo

Affiliations
Review

Imprinted X inactivation and reprogramming in the preimplantation mouse embryo

Takashi Sado et al. Hum Mol Genet. .

Abstract

X chromosome inactivation is a developmentally regulated process that causes one of the two X chromosomes in normal female mammals to become transcriptionally silenced, thus equalizing the expression of X-linked genes between the sexes. Such dosage compensation depends upon dynamic genetic and epigenetic events occurring very early in development. X inactivation is controlled by an X inactivation centre that is associated with the expression of non-coding RNAs required for the silencing. Also associated with the inactive X are repressive histone modifications and polycomb protein-mediated states, which are progressively acquired during the inactivation process. In mouse, two forms of X inactivation have been described. Random X inactivation happens in the derivatives of the inner cell mass (ICM) giving rise to embryos where the maternally inherited X(Xm) is inactive in some cells and the paternally derived X (Xp) is inactive in others. Random X inactivation occurs around the time of implantation. Imprinted X inactivation, the preferential inactivation of the Xp chromosome, occurs earlier and, although there has been some debate as to the precise timing of initiation of this event, is apparent in all cells early in preimplantation development, then is subsequently confined to the cells of the extraembryonic lineages. A picture is emerging whereby initial epigenetic asymmetry between the two parental X chromosomes is reprogrammed in a lineage specific manner resulting in a switch from imprinted to random inactivation in embryonic derivatives. Neither the underlying reason nor the full extent of these early lineage specific epigenetic changes is known, but they may be correlated with more genome-wide reprogramming events essential for normal development.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources