Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 May;26(5):1393-9.

COX-2 overexpression increases motility and invasion of breast cancer cells

Affiliations
  • PMID: 15809733

COX-2 overexpression increases motility and invasion of breast cancer cells

Balraj Singh et al. Int J Oncol. 2005 May.

Abstract

Cyclooxygenase-2 (COX-2), an inducible enzyme involved in prostaglandin (including PGE(2)) biosynthesis, is overexpressed in several epithelial malignancies including breast cancer. We tested the hypothesis that COX-2 overexpression in breast cancer cells results in increased cell motility and invasion. COX-2 overproducing cells were generated by stable transfection of several human breast cancer cells with pSG5-COX2 vector. We confirmed the overexpression of COX-2 protein by western blotting, and by measuring PGE(2) in the medium with an immunoassay. We measured cell motility by counting the number of cells crossing an 8-micron pore size PET membrane, and cell invasion by counting the number of cells invading through a Matrigel-coated membrane that simulates basement membrane. COX-2 transfected MDA-231 cells produced 30-43-fold more PGE2 as compared to parental cells. COX-2 overexpression increased cell migration approximately 2.2-fold and cell invasion through Matrigel approximately 5.1-fold. Addition of 50 microM NS-398, a COX-2 inhibitor, inhibited Matrigel invasion of MDA-231 cells by 54% as compared to solvent confirming the role of COX-2 in cell invasion. It is known that an increase in cell migration and invasion can be brought about by cytoskeletal alterations and basement membrane degradation due to increased expression of pro-urokinase plasminogen activator (pro-uPA). To investigate the mechanism of our observed increase in cell invasion by COX-2, we found by western blotting that the level of pro-uPA was significantly higher (approximately 5-fold) in COX-2 transfected MDA-231 cells than untransfected MDA-231 cells. Similar to our observations in cell culture, we found evidence that increased COX-2 activity correlates with uPA in a mouse model of breast cancer metastasis to bone. In this study, we conclude that COX-2 overexpression in human breast cancer cells enhances cell motility and invasiveness thus suggesting a mechanism of COX-2 mediated metastasis.

PubMed Disclaimer

Similar articles

Cited by

Publication types