Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Apr 15;118(Pt 8):1559-63.
doi: 10.1242/jcs.02332.

Multi-lineage potential of fetal cells in maternal tissue: a legacy in reverse

Affiliations
Free article
Review

Multi-lineage potential of fetal cells in maternal tissue: a legacy in reverse

Kiarash Khosrotehrani et al. J Cell Sci. .
Free article

Abstract

Fetal cells circulate in pregnant women and persist in blood and tissue for decades post-partum. The mother thus becomes chimeric. Factors that may influence such fetal cell microchimerism include histocompatibility, fetal or placental abnormalities, or a reproductive history that includes miscarriage or elective termination. Fetal cell microchimerism is associated with some maternal autoimmune diseases, such as systemic sclerosis. Moreover, a novel population of fetal cells, the pregnancy-associated progenitor cells (PAPCs), appears to differentiate in diseased or injured maternal tissue. The cellular origin of these cells is at present unknown but could be a hematopoietic stem cell, a mesenchymal stem cell, or a novel cell type. Pregnancy therefore results in the acquisition of cells with stem-cell-like properties that may influence maternal health post-partum. Rather than triggering disease, these cells may instead combat it.

PubMed Disclaimer

LinkOut - more resources