Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Apr 15;174(8):4670-7.
doi: 10.4049/jimmunol.174.8.4670.

Glucose availability regulates IFN-gamma production and p70S6 kinase activation in CD8+ effector T cells

Affiliations

Glucose availability regulates IFN-gamma production and p70S6 kinase activation in CD8+ effector T cells

Candace M Cham et al. J Immunol. .

Abstract

Differentiation of CD8+ T cells from the naive to the effector state is accompanied by changes in basal gene expression profiles that parallel the acquisition of effector functions. Among these are metabolism genes, and we now show that 2C TCR transgenic effector CD8+ T cells express higher levels of glycolytic enzymes and display greater glucose uptake, a higher glycolytic rate, and increased lactate production compared with naive cells. To determine whether glucose was required for effector T cell functions, we regulated glucose availability in vitro. Glucose deprivation strongly inhibited IFN-gamma gene expression, whereas IL-2 production was little affected. Inhibition correlated with diminished phosphorylation of p70S6 kinase and eIF4E binding protein 1 and a requirement for de novo protein synthesis, whereas other signaling pathways known to regulate IFN-gamma expression were unaffected. Together, our data reveal that optimal induction of IFN-gamma transcription is a glucose-dependent process, indicate that there are undefined factors that influence IFN-gamma expression, and have implications for regulation of the effector phase of CD8+ T cell responses in tissue microenvironments.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources