Induction of the Candida albicans filamentous growth program by relief of transcriptional repression: a genome-wide analysis
- PMID: 15814840
- PMCID: PMC1142434
- DOI: 10.1091/mbc.e05-01-0073
Induction of the Candida albicans filamentous growth program by relief of transcriptional repression: a genome-wide analysis
Abstract
Candida albicans, the major human fungal pathogen, undergoes a reversible morphological transition from blastospores (round budding cells) to filaments (elongated cells attached end-to-end). This transition, which is induced upon exposure of C. albicans cells to a number of host conditions, including serum and body temperature (37 degrees C), is required for virulence. Using whole-genome DNA microarray analysis, we describe 61 genes that are significantly induced (> or =2-fold) during the blastospore to filament transition that takes place in response to exposure to serum and 37 degrees C. We next show that approximately half of these genes are transcriptionally repressed in the blastospore state by three transcriptional repressors, Rfg1, Nrg1, and Tup1. We conclude that the relief of this transcriptional repression plays a key role in bringing the C. albicans filamentous growth program into play, and we describe the framework of this transcriptional circuit.
Figures






Similar articles
-
Control of filament formation in Candida albicans by the transcriptional repressor TUP1.Science. 1997 Jul 4;277(5322):105-9. doi: 10.1126/science.277.5322.105. Science. 1997. PMID: 9204892
-
NRG1, a repressor of filamentous growth in C.albicans, is down-regulated during filament induction.EMBO J. 2001 Sep 3;20(17):4753-61. doi: 10.1093/emboj/20.17.4753. EMBO J. 2001. PMID: 11532939 Free PMC article.
-
Ahr1 and Tup1 Contribute to the Transcriptional Control of Virulence-Associated Genes in Candida albicans.mBio. 2020 Apr 28;11(2):e00206-20. doi: 10.1128/mBio.00206-20. mBio. 2020. PMID: 32345638 Free PMC article.
-
Dimorphism and virulence in Candida albicans.Curr Opin Microbiol. 1998 Dec;1(6):687-92. doi: 10.1016/s1369-5274(98)80116-1. Curr Opin Microbiol. 1998. PMID: 10066539 Review.
-
Candida albicans hyphal initiation and elongation.Trends Microbiol. 2014 Dec;22(12):707-14. doi: 10.1016/j.tim.2014.09.001. Epub 2014 Sep 25. Trends Microbiol. 2014. PMID: 25262420 Free PMC article. Review.
Cited by
-
A core filamentation response network in Candida albicans is restricted to eight genes.PLoS One. 2013;8(3):e58613. doi: 10.1371/journal.pone.0058613. Epub 2013 Mar 14. PLoS One. 2013. PMID: 23516516 Free PMC article.
-
Ras signaling gets fine-tuned: regulation of multiple pathogenic traits of Candida albicans.Eukaryot Cell. 2013 Oct;12(10):1316-25. doi: 10.1128/EC.00094-13. Epub 2013 Aug 2. Eukaryot Cell. 2013. PMID: 23913542 Free PMC article. Review.
-
A new perspective in sepsis treatment: could RGD-dependent integrins be novel targets?Drug Discov Today. 2020 Dec;25(12):2317-2325. doi: 10.1016/j.drudis.2020.09.038. Epub 2020 Oct 6. Drug Discov Today. 2020. PMID: 33035665 Free PMC article. Review.
-
Network analysis of hyphae forming proteins in Candida albicans identifies important proteins responsible for pathovirulence in the organism.Heliyon. 2019 Jun 13;5(6):e01916. doi: 10.1016/j.heliyon.2019.e01916. eCollection 2019 Jun. Heliyon. 2019. PMID: 31338453 Free PMC article.
-
A phenotypic profile of the Candida albicans regulatory network.PLoS Genet. 2009 Dec;5(12):e1000783. doi: 10.1371/journal.pgen.1000783. Epub 2009 Dec 24. PLoS Genet. 2009. PMID: 20041210 Free PMC article.
References
-
- Bramley, T. A., Menzies, G. S., Williams, R. J., Kinsman, O. S., and Adams, D. J. (1991). Binding sites for LH in Candida albicans: comparison with the mammalian corpus luteum LH receptor. J. Endocrinol. 130, 177-190. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases