Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Apr;43(4):1917-20.
doi: 10.1128/JCM.43.4.1917-1920.2005.

Evaluation of broth microdilution antifungal susceptibility testing conditions for Trichophyton rubrum

Affiliations

Evaluation of broth microdilution antifungal susceptibility testing conditions for Trichophyton rubrum

D A Santos et al. J Clin Microbiol. 2005 Apr.

Abstract

Fifty clinical isolates of Trichophyton rubrum were selected to test with ketoconazole, fluconazole, itraconazole, griseofulvin, and terbinafine by following the National Committee for Clinical Laboratory Standards susceptibility testing guidelines for filamentous fungi (M38-A). In addition, other susceptibility testing conditions were evaluated: (i) three medium formulations including RPMI 1640 (standard medium), McVeigh & Morton (MVM), and Sabouraud dextrose broth (SDB); (ii) two incubation temperatures (28 and 35 degrees C); and (iii) three incubation periods (4, 7, and 10 days). The strains Candida parapsilosis (ATCC 22019), Candida krusei (ATCC 6258), T. rubrum (ATCC 40051), and Trichophyton mentagrophytes (ATCC 40004) were included as quality controls. All isolates produced clearly detectable growth only after 7 days of incubation. MICs were significantly independent of the incubation temperature (28 or 35 degrees C) (P < 0.05). Different incubation periods resulted in MICs which were consistently different for each medium when azoles and griseofulvin were tested (P < 0.05). MICs obtained from different media at the same incubation time for the same isolate were significantly different when azoles and griseofulvin were tested (P < 0.05). MICs were consistently higher (usually 1 to 2 dilutions) with RPMI than with MVM or SDB (P < 0.05). When terbinafine was tested, no parameter had any influence on MICs (P < 0.05). RPMI standard medium appears to be a suitable testing medium for determining the MICs for T. rubrum. MICs obtained at different incubation times need to be correlated with clinical outcome to demonstrate which time has better reliability.

PubMed Disclaimer

References

    1. Barchiesi, F., D. Arzeni, V. Camiletti, O. Simonetti, A. Cellini, A. M. Offidani, and G. Scalise. 2001. In vitro activity of posaconazole against clinical isolates of dermatophytes. J. Clin. Microbiol. 39:4208-4209. - PMC - PubMed
    1. Barry, A. L., M. A. Pfaller, S. D. Brown, A. Espinel-Ingroff, M. A. Ghannoum, C. Knapp, R. P. Rennie, J. H. Rex, and M. G. Rinaldi. 2000. Quality control limits of broth microdilution susceptibility tests of ten antifungal agents. J. Clin. Microbiol. 38:3457-3459. - PMC - PubMed
    1. Butty, P., J. C. Lebecq, M. Mallie, and J. M. Bastide. 1995. Evaluation of the susceptibility of dermatophytes to antifungal drugs: a new technique. J. Med. Vet. Mycol. 33:403-409. - PubMed
    1. Espinel-Ingroff, A. 2003. Evaluation of broth microdilution testing parameters and agar diffusion Etest procedure for testing susceptibilities of Aspergillus spp. to caspofungin acetate (MK-0991). J. Clin. Microbiol. 41:403-409. - PMC - PubMed
    1. Favre, B., B. Hofbauer, H. Kwang-Soo, and N. S. Ryder. 2003. Comparison of in vitro activities of 17 antifungal drugs against a panel of 20 dermatophytes by using a microdilution assay. J. Clin. Microbiol. 41:4817-4819. - PMC - PubMed

Publication types

LinkOut - more resources