Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Apr;93(2):452-62.
doi: 10.1111/j.1471-4159.2005.03049.x.

Functional SDF1 alpha/CXCR4 signaling in the developing spinal cord

Affiliations
Free article
Comparative Study

Functional SDF1 alpha/CXCR4 signaling in the developing spinal cord

Yongquan Luo et al. J Neurochem. 2005 Apr.
Free article

Abstract

Stromal cell-derived factor (SDF1) and its cognate receptor CXCR4 have been shown to play a central role in the development of the cerebellum, hippocampus, and neocortex. However, little is known about the functions of SDF1/CXCR4 in early spinal cord progenitor cell differentiation. Here, we show that a functional SDF1alpha/CXCR4 signaling pathway is present in developing spinal cord cells (a spliced variant of SDF1). RT-PCR analysis of SDF1alpha and CXCR4 showed that they were present in E10.5 neural tube and their expression increased as neuroepithelial cells differentiated into more committed spinal cord progenitors. Stimulation of the more differentiated progenitors (E14.5) with SDF1alpha resulted in rapid activation of the extracellular signal-regulated kinase (ERK)1/2. This SDF1alpha-induced ERK activity was dose dependent and could be inhibited by pre-treatment of the cells with either pertussis toxin, an inactivator of G-protein-coupled receptors, or PD98059, a MEK1 inhibitor. Concomitant with ERK activation, SDF1alpha also activated the downstream transcription factor Ets, a substrate for ERK phosphorylation. Further, downstream activation of genes associated with cell survival, differentiation and migration was assessed using a G-protein-coupled receptor pathway-focused microarray. We found that 23 genes, including PDK1, Egr-1, Grm5, and E-selectin, were up-regulated by SDF1alpha. Furthermore, SDF1alpha induced chemotaxis in both neural and glial progenitors in in vitro migration assays. Pre-treatment of the cells with either pertussis toxin or PD98059 completely inhibited SDF1alpha-induced chemotaxis. Thus, our data suggest that SDF1alpha may function through a CXCR4/ERK/Ets-linked signalling pathway in spinal cord neural development to modulate migration of progenitor cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources