Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 May;57(5 Pt 2):38R-46R.
doi: 10.1203/01.PDR.0000159630.35883.BE. Epub 2005 Apr 6.

Control mechanisms of lung alveolar development and their disorders in bronchopulmonary dysplasia

Affiliations
Review

Control mechanisms of lung alveolar development and their disorders in bronchopulmonary dysplasia

Jacques Bourbon et al. Pediatr Res. 2005 May.

Abstract

Bronchopulmonary dysplasia (BPD) is a chronic lung disease that occurs in very premature infants and is characterized by impaired alveologenesis. This ultimate phase of lung development is mostly postnatal and allows growth of gas-exchange surface area to meet the needs of the organism. Alveologenesis is a highly integrated process that implies cooperative interactions between interstitial, epithelial, and vascular compartments of the lung. Understanding of its underlying mechanisms has considerably progressed recently with identification of structural, signaling, or remodeling molecules that are crucial in the process. Thus, the pivotal role of elastin deposition in lung walls has been demonstrated, and many key control-molecules have been identified, including various transcription factors, growth factors such as platelet-derived growth factor, fibroblast growth factors, and vascular endothelial growth factor, matrix-remodeling enzymes, and retinoids. BPD-associated changes in lung expression/content have been evidenced for most of these molecules, especially for signaling pathways, through both clinical investigations in premature infants and the use of animal models, including the premature baboon or lamb, neonatal exposure to hyperoxia in rodents, and maternal-fetal infection. These findings open therapeutic perspectives to correct imbalanced signaling. Unraveling the intimate molecular mechanisms of alveolar building appears as a prerequisite to define new strategies for the prevention and care of BPD.

PubMed Disclaimer

MeSH terms

LinkOut - more resources