Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 May;21(3):337-43.
doi: 10.1097/01.mog.0000158111.21345.c2.

Cholangiocyte biology

Affiliations
Review

Cholangiocyte biology

Pamela S Tietz et al. Curr Opin Gastroenterol. 2005 May.

Abstract

Purpose of review: Cholangiocytes are increasingly recognized as biologically important because of the diverse array of cellular processes in which they participate. Collectively, these processes define normal function and, when disturbed, account for abnormalities that cause disease. Advances in animal models and sophisticated technology in imaging and gene silencing have allowed progress in defining the roles that cholangiocytes play in signaling, transport of water, ions and solutes, and alterations that result in cholestasis. The pace of advances in technology justifies a yearly summary to identify the most important developments in cholangiocyte biology.

Recent findings: The main areas of recent progress include insights into the molecular mechanisms of bile secretion and the development of new experimental models and technologies.

Summary: Understanding the critical components and key biologic processes in cholangiocytes responsible for regulation of ductal bile secretion is an initial and required step in generating hypotheses relevant to disease. With regard to the pathologic relevance of this work, cholestatic liver diseases represent a broad group of hepatobiliary disorders with which hepatologists must deal. In addition to genetic defects, the study of the normal and altered trafficking of cholangiocyte transport systems involved in bile secretion may provide a molecular correlate for the functional changes that occur in disease. Critical to this understanding is the ongoing development of experimental models and techniques to interpret data to answer key hypothesis-driven questions. Second, the collegial sharing and exchange of novel concepts, ideas, reagents, and probes promotes positive advances in the field.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources