Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1992 May 1;69(3):439-56.
doi: 10.1016/0092-8674(92)90446-j.

DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression

Affiliations
Comparative Study

DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression

D K Bishop et al. Cell. .

Abstract

DMC1 is a new meiosis-specific yeast gene. Dmc1 protein is structurally similar to bacterial RecA proteins. dmc1 mutants are defective in reciprocal recombination, accumulate double-strand break (DSB) recombination intermediates, fail to form normal synaptonemal complex (SC), and arrest late in meiotic prophase. dmc1 phenotypes are consistent with a functional relationship between Dmc1 and RecA, and thus eukaryotic and prokaryotic mechanisms for homology recognition and strand exchange may be related. dmc1 phenotypes provide further evidence that recombination and SC formation are interrelated processes and are consistent with a requirement for DNA-DNA interactions during SC formation. dmc1 mutations confer prophase arrest. Additional evidence suggests that arrest occurs at a meiosis-specific cell cycle "checkpoint" in response to a primary defect in prophase chromosome metabolism. DMC1 is homologous to yeast's RAD51 gene, supporting the view that mitotic DSB repair has been recruited for use in meiotic chromosome metabolism.

PubMed Disclaimer

Publication types