Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 May;37(5):489-95.
doi: 10.1016/j.ceca.2005.01.003.

Presynaptic Ca2+ dynamics, Ca2+ buffers and synaptic efficacy

Affiliations
Review

Presynaptic Ca2+ dynamics, Ca2+ buffers and synaptic efficacy

Nail Burnashev et al. Cell Calcium. 2005 May.

Abstract

In synapses neurotransmitter release is triggered by elevation of Ca2+ concentration at a Ca2+ sensor of the release machinery. The Ca2+ concentration at the release site at the given time point is determined by Ca2+ dynamics within presynaptic terminal. It depends on a source of Ca2+ (usually voltage-gated Ca2+ channels), diffusional distance between the source of Ca2+ and the Ca2+ sensor and Ca2+ buffering by endogenous Ca2+ buffers. In many synapses transmitter release can be enhanced (facilitated) during repetitive activity of neurons. The main source of facilitation is activity-dependent increase of Ca2+ concentration at the release site. Several mechanisms of facilitation have been proposed, namely, accumulation of residual Ca2+, multi-site (X receptor) mechanism and partial Ca2+ buffer saturation mechanism. In this review we discuss theoretical and experimental evidence in favor of one or the other of proposed mechanisms.

PubMed Disclaimer

LinkOut - more resources